Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Solucionario Van Valkenburg, Ejercicios de Teoría de Circuitos

Solucionario del libro analisis de redes de Van Valkenburg

Tipo: Ejercicios

2019/2020

Subido el 30/06/2020

juanms96
juanms96 🇨🇴

4.8

(4)

1 documento

1 / 406

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Vista previa parcial del texto

¡Descarga Solucionario Van Valkenburg y más Ejercicios en PDF de Teoría de Circuitos solo en Docsity!

Dedicated to: Prof. Dr. sohail aftab qureshi Conventions for Describing Networks 2 - 1. For the controlled (monitored) source shown in the figure, prepare a plot similar to that given in Fig. 2-8(b). v 2 v 1 = Vb Vb v 1 = Va Va i 2 Fig. 2-8 (b) Solution: Open your book & see the figure (P/46) It is voltage controlled current source. i 2 +Ve axis v 2

  • Ve axis gv 1 i 2 gv 1 + v 2 current source

Dedicated to: Prof. Dr. sohail aftab qureshi Slope: y = mx + c (x 1 , y 1 ) = (0, V/Rb) (x 2 , y 2 ) = (V, 0) m = (y 2 y 1 )/(x 2 x 1 ) = (0 V/Rb)/(V - 0) = (-V/Rb)/V = (-V/Rb)(1/V) = - 1/Rb y-intercept = V/Rb x-intercept = V Slope y-intercept x-intercept

  • 1/Rb V/Rb V 2 - 4. The magnetic system shown in the figure has three windings marked 1- 1’, 2 - 2’, and 3- 3’. Using three different forms of dots, establish polarity markings for these windings. Solution: Open your book & see the figure (P/46) Lets assume current in coil 1- 1’ has direction up at 1 (increasing). It produces flux  (increasing) in that core in clockwise direction. 1 1’ 2 2’ 3 3’ According to the Lenz’s law current produced in coil 2 - 2’ is in such a direction that it opposes the increasing flux . So direction of current in 2- 2’ is down at 2’. Hence ends 1 & 2’ are of same polarity at any instant. Hence are marked with. Similarly assuming the direction of current in coil 2- 2’, we can show at any instant 2 & 3’ have same polarities and also 1 & 3 have same polarities. 2 - 5. Place three windings on the core shown for Prob. 2-4 with winding senses selected such that the following terminals have the same mark: (a) 1 and 2, 2 and 3, 3 and 1, (b) 1’ and 2’, 2’ and 3’, 3’ and 1’.

Dedicated to: Prof. Dr. sohail aftab qureshi Solution: Open your book & see the figure (P/47) 1 1’ 2 2’ 3 3’ (a) 1 1’ 2 2’ 3 3’ (b) 2 - 6. The figure shows four windings on a magnetic flux-conducting core. Using different shaped dots, establish polarity markings for the windings. Solution: Open your book & see the figure (P/47) i 1 i 3 i 4 1 (Follow Fleming’s right hand rule)

i 2 Coil 1 Coil 3 Coil 2 Coil 4

Dedicated to: Prof. Dr. sohail aftab qureshi V = self induced e.m.f. (1) + self induced e.m.f. (2) + mutually induced e.m.f. (1) + mutually induced e.m.f. (2) V = L 1 di/dt + L 2 di/dt + M di/dt + M di/dt Let Leq be the equivalent inductance then V = Leq di/dt Leq di/dt = (L 1 + L 2 + M + M) di/dt Leq = L 1 + L 2 + M + M Leq = L 1 + L 2 + 2M M L 1 L 2 i V (b) This is the case of subtractive flux. V = L 1 di/dt + L 2 di/dt - M di/dt - M di/dt Let Leq be the equivalent inductance then V = Leq di/dt Leq di/dt = (L 1 + L 2 - M - M) di/dt Leq = L 1 + L 2 - M - M Leq = L 1 + L 2 - 2M 2 - 9. A transformer has 100 turns on the primary (terminals 1- 1’) and 200 turns on the secondary (terminals 2- 2’). A current in the primary causes a magnetic flux, which links all turns of both the primary and the secondary. The flux decreases according to the law = e

  • t Weber, when t 0. Find: (a) the flux linkages of the primary and secondary, (b) the voltage induced in the secondary. Solution: N 1 = 100 N 2 = 200 = e
  • t (t 0) Primary flux linkage 1 = N 1 = 100 e-t Secondary flux linkage 2 = N 2 = 200 e
  • t Magnitude of voltage induced in secondary v 2 = d 2 /dt = d/dt(200 e
  • t ) v 2 = - 200 e-t Hence secondary induced voltage has magnitude v 2 = 200 e
  • t 2 - 10. In (a) of the figure is shown a resistive network. In (b) and (c) are shown graphs with two of the four nodes identified. For these two graphs, assign resistors

Dedicated to: Prof. Dr. sohail aftab qureshi to the branches and identify the two remaining nodes such that the resulting networks are topologically identical to that shown in (a). Solution: Open your book & see the figure (P/48) b R 2 R 3 R 1 a c R 5 R 4 d R 4 d c R 5 R 1 R 3 b R 2 a

Dedicated to: Prof. Dr. sohail aftab qureshi Maximum number of branches = 7 2 - 16. Display five different trees for the graph shown in the figure. Show branches with solid lines and chords with dotted lines. (b) Repeat (a) for the graph of (c) in Prob. 2-11. Solution: Open your book & see the figure (P/49)

Dedicated to: Prof. Dr. sohail aftab qureshi b):

2 - 17. Determine all trees of the graphs shown in (a) of Prob. 2-11 and (b) of Prob. 2-

  1. Use solid lines for tree branches and dotted lines for chords. Solution: Open your book & see the figure (P/49) All trees:

Dedicated to: Prof. Dr. sohail aftab qureshi

All trees of Solution:

Dedicated to: Prof. Dr. sohail aftab qureshi Before solving exercise following terms should be kept in mind:

  1. Node
  2. Branch
  3. Tree
  4. Transformer theory
  5. Slope
  6. Straight line equation
  7. Intercept
  8. Self induction
  9. Mutual induction
  10. Current controlled voltage source
  11. Voltage controlled current source
  12. Coordinate system ALLAH MUHAMMAD (P.B.U.H)

Dedicated to: Prof. Dr. sohail aftab qureshi Diagram (b) reduces to

C 1 + v Ceq

From result obtained by (a) 1/Ceq = (1/C 1 + 1/Ceq ’) 1/Ceq = (1/C 1 + 1/C 2 + C 3 ) 3 - 2. What must be the relationship between Leq and L 1 , L 2 and M for the networks of (a) and of (b) to be equivalent to that of (c)? Solution: Open your book & see the figure (P/87) In network (a) applying KVL v = L 1 di/dt + L 2 di/dt + Mdi/dt + Mdi/dt v = (L 1 + L 2 + M + M)di/dt v = (L 1 + L 2 + 2M)di/dt In network (c) v = Leqdi/dt If (a) & (c) are equivalent (L 1 + L 2 + 2M)di/dt = Leqdi/dt (L 1 + L 2 + 2M) = Leq In network (b) applying KVL v = L 1 di/dt + L 2 di/dt - Mdi/dt - Mdi/dt v = (L 1 + L 2 - M M)di/dt v = (L 1 + L 2 - 2M)di/dt In network (c) v = Leqdi/dt If (b) & (c) are equivalent (L 1 + L 2 - 2M)di/dt = Leqdi/dt (L 1 + L 2 - 2M) = Leq 3 - 3. Repeat Prob. 3-2 for the three networks shown in the accompanying figure. Solution: Open your book & see the figure (P/87)

Dedicated to: Prof. Dr. sohail aftab qureshi

M v i 1 L 1 L 2 loop 1 loop 2 i 2

Applying KVL in loop 1 v = L 1 d(i 1 i 2 )/dt + Mdi 2 /dt v = L 1 di 1 /dt - L 1 di 2 /dt + Mdi 2 /dt v = L 1 di 1 /dt + Mdi 2 /dt - L 1 di 2 /dt v = L 1 di 1 /dt + (M - L 1 )di 2 /dt Applying KVL in loop 2 0 = L 2 di 2 /dt + L 1 d(i 2 i 1 )/dt + {-Mdi 2 /dt} + {-Md(i 2 i 1 )/dt} 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - Mdi 2 /dt - Md(i 2 i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - Mdi 2 /dt - Mdi 2 /dt + Mdi 1 /dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - 2Mdi 2 /dt + Mdi 1 /dt 0 = (M L 1 ) di 1 /dt + (L 1 + L 2 2M) di 2 /dt Writing in matrix form L 1 M L 1 di 1 /dt v = M L 1 L 1 + L 2 2M di 2 /dt 0 v M L 1 0 L 1 + L 2 2M di 1 /dt = L 1 M L 1 M L 1 L 1 + L 2 2M

Dedicated to: Prof. Dr. sohail aftab qureshi

Applying KVL in loop 1 v = L 1 d(i 1 i 2 )/dt - Mdi 2 /dt v = L 1 di 1 /dt - L 1 di 2 /dt - Mdi 2 /dt v = L 1 di 1 /dt + Mdi 2 /dt - L 1 di 2 /dt v = L 1 di 1 /dt - (L 1 + M)di 2 /dt Applying KVL in loop 2 0 = L 2 di 2 /dt + L 1 d(i 2 i 1 )/dt + Mdi 2 /dt + Md(i 2 i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + Mdi 2 /dt + Md(i 2 i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + Mdi 2 /dt + Mdi 2 /dt - Mdi 1 /dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + 2Mdi 2 /dt - Mdi 1 /dt 0 = - (L 1 + M) di 1 /dt + (L 1 + L 2 + 2M) di 2 /dt Writing in matrix form L 1 - (L 1 + M) di 1 /dt v =

  • (L 1 + M) L 1 + L 2 + 2M di 2 /dt 0 v - (L 1 + M) 0 L 1 + L 2 + 2M di 1 /dt = L 1 - (L 1 + M)
  • (L 1 + M) L 1 + L 2 + 2M v - (L 1 + M) 0 L 1 + L 2 + 2M = (v)( L 1 + L 2 + 2M) 0 = (v)(L 1 + L 2 + 2M) L 1 - (L 1 + M)
  • (L 1 + M) L 1 + L 2 + 2M = (L 1 )(L 1 + L 2 + 2M) - (L 1 + M)(L 1 + M)

Dedicated to: Prof. Dr. sohail aftab qureshi = (L 1 )(L 1 + L 2 + 2M) - (L 1 + M)^2 = (L 1 2

  • L 1 L 2 + 2L 1 M) - M 2
  • L 1 2 - 2ML 1 = L 1 2
  • L 1 L 2 + 2L 1 M - M 2
  • L 1 2
  • 2ML 1 = L 1 L 2 M^2 di 1 /dt = (v)(L 1 + L 2 + 2M)/L 1 L 2 M^2 di 1 /dt {(L 1 L 2 M^2 )/(L 1 + L 2 + 2M)} = v In network (c) v i 1 Leq v = Leqdi 1 /dt For (a) & (c) to be equal di 1 /dt {(L 1 L 2 M 2 )/(L 1 + L 2 + 2M)} = Leqdi 1 /dt (L 1 L 2 M^2 )/(L 1 + L 2 + 2M) = Leq 3 - 4. The network of inductors shown in the figure is composed of a 1-H inductor on each edge of a cube with the inductors connected to the vertices of the cube as shown. Show that, with respect to vertices a and b, the network is equivalent to that in (b) of the figure when Leq = 5/6 H. Make use of symmetry in working this problem, rather than writing kirchhoff laws. Solution: 1 - H Open your book & see the figure (P/88) 1 - H 1 - H 1 - H 1 - H 1 - H 1 - H 1 1’ 1 - H 1 - H 1 - H 1 - H