




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Solucionario del libro analisis de redes de Van Valkenburg
Tipo: Ejercicios
1 / 406
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
Dedicated to: Prof. Dr. sohail aftab qureshi Conventions for Describing Networks 2 - 1. For the controlled (monitored) source shown in the figure, prepare a plot similar to that given in Fig. 2-8(b). v 2 v 1 = Vb Vb v 1 = Va Va i 2 Fig. 2-8 (b) Solution: Open your book & see the figure (P/46) It is voltage controlled current source. i 2 +Ve axis v 2
Dedicated to: Prof. Dr. sohail aftab qureshi Slope: y = mx + c (x 1 , y 1 ) = (0, V/Rb) (x 2 , y 2 ) = (V, 0) m = (y 2 – y 1 )/(x 2 – x 1 ) = (0 – V/Rb)/(V - 0) = (-V/Rb)/V = (-V/Rb)(1/V) = - 1/Rb y-intercept = V/Rb x-intercept = V Slope y-intercept x-intercept
Dedicated to: Prof. Dr. sohail aftab qureshi Solution: Open your book & see the figure (P/47) 1 1’ 2 2’ 3 3’ (a) 1 1’ 2 2’ 3 3’ (b) 2 - 6. The figure shows four windings on a magnetic flux-conducting core. Using different shaped dots, establish polarity markings for the windings. Solution: Open your book & see the figure (P/47) i 1 i 3 i 4 1 (Follow Fleming’s right hand rule)
i 2 Coil 1 Coil 3 Coil 2 Coil 4
Dedicated to: Prof. Dr. sohail aftab qureshi V = self induced e.m.f. (1) + self induced e.m.f. (2) + mutually induced e.m.f. (1) + mutually induced e.m.f. (2) V = L 1 di/dt + L 2 di/dt + M di/dt + M di/dt Let Leq be the equivalent inductance then V = Leq di/dt Leq di/dt = (L 1 + L 2 + M + M) di/dt Leq = L 1 + L 2 + M + M Leq = L 1 + L 2 + 2M M L 1 L 2 i V (b) This is the case of subtractive flux. V = L 1 di/dt + L 2 di/dt - M di/dt - M di/dt Let Leq be the equivalent inductance then V = Leq di/dt Leq di/dt = (L 1 + L 2 - M - M) di/dt Leq = L 1 + L 2 - M - M Leq = L 1 + L 2 - 2M 2 - 9. A transformer has 100 turns on the primary (terminals 1- 1’) and 200 turns on the secondary (terminals 2- 2’). A current in the primary causes a magnetic flux, which links all turns of both the primary and the secondary. The flux decreases according to the law = e
Dedicated to: Prof. Dr. sohail aftab qureshi to the branches and identify the two remaining nodes such that the resulting networks are topologically identical to that shown in (a). Solution: Open your book & see the figure (P/48) b R 2 R 3 R 1 a c R 5 R 4 d R 4 d c R 5 R 1 R 3 b R 2 a
Dedicated to: Prof. Dr. sohail aftab qureshi Maximum number of branches = 7 2 - 16. Display five different trees for the graph shown in the figure. Show branches with solid lines and chords with dotted lines. (b) Repeat (a) for the graph of (c) in Prob. 2-11. Solution: Open your book & see the figure (P/49)
Dedicated to: Prof. Dr. sohail aftab qureshi b):
2 - 17. Determine all trees of the graphs shown in (a) of Prob. 2-11 and (b) of Prob. 2-
Dedicated to: Prof. Dr. sohail aftab qureshi
All trees of Solution:
Dedicated to: Prof. Dr. sohail aftab qureshi Before solving exercise following terms should be kept in mind:
Dedicated to: Prof. Dr. sohail aftab qureshi Diagram (b) reduces to
C 1 + v Ceq ’
From result obtained by (a) 1/Ceq = (1/C 1 + 1/Ceq ’) 1/Ceq = (1/C 1 + 1/C 2 + C 3 ) 3 - 2. What must be the relationship between Leq and L 1 , L 2 and M for the networks of (a) and of (b) to be equivalent to that of (c)? Solution: Open your book & see the figure (P/87) In network (a) applying KVL v = L 1 di/dt + L 2 di/dt + Mdi/dt + Mdi/dt v = (L 1 + L 2 + M + M)di/dt v = (L 1 + L 2 + 2M)di/dt In network (c) v = Leqdi/dt If (a) & (c) are equivalent (L 1 + L 2 + 2M)di/dt = Leqdi/dt (L 1 + L 2 + 2M) = Leq In network (b) applying KVL v = L 1 di/dt + L 2 di/dt - Mdi/dt - Mdi/dt v = (L 1 + L 2 - M – M)di/dt v = (L 1 + L 2 - 2M)di/dt In network (c) v = Leqdi/dt If (b) & (c) are equivalent (L 1 + L 2 - 2M)di/dt = Leqdi/dt (L 1 + L 2 - 2M) = Leq 3 - 3. Repeat Prob. 3-2 for the three networks shown in the accompanying figure. Solution: Open your book & see the figure (P/87)
Dedicated to: Prof. Dr. sohail aftab qureshi
M v i 1 L 1 L 2 loop 1 loop 2 i 2
Applying KVL in loop 1 v = L 1 d(i 1 – i 2 )/dt + Mdi 2 /dt v = L 1 di 1 /dt - L 1 di 2 /dt + Mdi 2 /dt v = L 1 di 1 /dt + Mdi 2 /dt - L 1 di 2 /dt v = L 1 di 1 /dt + (M - L 1 )di 2 /dt Applying KVL in loop 2 0 = L 2 di 2 /dt + L 1 d(i 2 – i 1 )/dt + {-Mdi 2 /dt} + {-Md(i 2 – i 1 )/dt} 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - Mdi 2 /dt - Md(i 2 – i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - Mdi 2 /dt - Mdi 2 /dt + Mdi 1 /dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt - 2Mdi 2 /dt + Mdi 1 /dt 0 = (M – L 1 ) di 1 /dt + (L 1 + L 2 – 2M) di 2 /dt Writing in matrix form L 1 M – L 1 di 1 /dt v = M – L 1 L 1 + L 2 – 2M di 2 /dt 0 v M – L 1 0 L 1 + L 2 – 2M di 1 /dt = L 1 M – L 1 M – L 1 L 1 + L 2 – 2M
Dedicated to: Prof. Dr. sohail aftab qureshi
Applying KVL in loop 1 v = L 1 d(i 1 – i 2 )/dt - Mdi 2 /dt v = L 1 di 1 /dt - L 1 di 2 /dt - Mdi 2 /dt v = L 1 di 1 /dt + Mdi 2 /dt - L 1 di 2 /dt v = L 1 di 1 /dt - (L 1 + M)di 2 /dt Applying KVL in loop 2 0 = L 2 di 2 /dt + L 1 d(i 2 – i 1 )/dt + Mdi 2 /dt + Md(i 2 – i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + Mdi 2 /dt + Md(i 2 – i 1 )/dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + Mdi 2 /dt + Mdi 2 /dt - Mdi 1 /dt 0 = L 2 di 2 /dt + L 1 di 2 /dt - L 1 di 1 /dt + 2Mdi 2 /dt - Mdi 1 /dt 0 = - (L 1 + M) di 1 /dt + (L 1 + L 2 + 2M) di 2 /dt Writing in matrix form L 1 - (L 1 + M) di 1 /dt v =
Dedicated to: Prof. Dr. sohail aftab qureshi = (L 1 )(L 1 + L 2 + 2M) - (L 1 + M)^2 = (L 1 2