




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Solucionario del libro Cálculo Multivariable - Dennis G. Zill. 4ta Edición.pdf
Tipo: Ejercicios
1 / 401
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
y
x
y
x
y
x
668
y
x
directrix: y = − 401 axis: x = 0
y
x
y
x
y
x
y
x
y
x
y
x
x + (^14)
vertex: (− 1 / 4 , 2) focus: (3/ 4 , 2) directrix: x = − 5 / 4 axis: y = 2
4
= 4p(1) so p = 641. Thus the equation is y^2 = 161 x.
2 , 0) and (1 −
2 , 0). To find the y-intercept set x = 0. Solving 1 = −2(y − 1) gives y = 12. The y-intercept is (0, 1 /2). y
x
vertices: (0, ±4) endpoints of the minor axis: (± 1 , 0)
eccentricity:
y
x
y
x
x^2 16
y^2 9 = 1 center: (0, 0) foci: (±
vertices: (± 4 , 0) endpoints of the minor axis: (0, ±3)
eccentricity:
y
x
vertices: (− 5 , −6), (− 5 , 2) endpoints of the minor axis: (− 6 , −2), (− 4 , −2)
eccentricity:
y
x
vertices: (3, −13), (3, 5) endpoints of the minor axis: (− 5 , −4), (11, −4)
eccentricity:
y
x
y + (^12)
center: (0, − 1 /2) foci: (0, − 1 / 2 ±
vertices: (0, − 5 /2), (0, 3 /2) endpoints of the minor axis: (− 1 , − 1 /2), (1, − 1 /2)
eccentricity:
y
x
(x + 2)^2 2
(y − 4)^2 72
center: (− 2 , 4) foci: (− 2 , 4 ±
vertices: (− 2 , 4 ± 6
endpoints of the minor axis: (− 2 ±
eccentricity:
y
x
(x − 7)^2 9
(y + 1)^2 25
center: (2, −1) foci: (2, −5), (2, 3) vertices: (2, −6), (2, 4) endpoints of the minor axis: (− 1 , −1), (5, −1) eccentricity:
y
x
(x + 1)^2 5
(y − 1)^2 9
center: (− 1 , 1) foci: (− 1 , −1), (− 1 , 3) vertices: (− 1 , −2), (− 1 , 4) endpoints of the minor axis: (− 1 ±
eccentricity:
5 and a = 8, so b =
y^2 64
9 + b^2.
Thus the equation is of the form
x^2 b^2
y^2 9 + b^2 = 1. The ellipse passes through the point
(− 1 , 2
2), thus
b^2
9 + b^2
= 1. Solving this for b, we obtain b =
the equation is x^2 3
y^2 12
y^2 b^2
= 1. The ellipse passes through the point (
5 , 4) so
b^2
= 1. Solving for b^2 , we
obtain b^2 = 20. Thus the equation of the ellipse is
x^2 25
y^2 20
7 and the equation of the ellipse is
(x − 1)^2 7
(y − 3)^2 16
Thus the equation is (x − 15 /2)^2 (11/2)^2
(y − 4)^2 18
y
x
vertices: (± 4 , 0) asymptotes: y = ± 54 x
eccentricity:
y
x
vertices: (± 2 , 0) asymptotes: y = ±x eccentricity:
y
x
y^2 20
x^2 4
= 1 center: (0, 0) foci: (0, ± 2
vertices: (0, ± 2
asymptotes: y = ±
5 x eccentricity:
y
x
y^2 9
x^2 16
= 1 center: (0, 0) foci: (0, ±5) vertices: (0, ±3) asymptotes: y = ± 34 x eccentricity:
y
x
vertices: (3, −1), (7, −1) asymptotes: y = − 1 ± 72 (x − 5)
eccentricity:
y
x
(x − 3)^2 5
(y − 1)^2 25
= 1 center: (3, 1) foci: (3 ±
vertices: (3 ±
asymptotes: y = 1 ±
5(x − 3) eccentricity:
y
x
(x + 1)^2 10
(y − 1 /2)^2 50
= 1 center: (− 1 , 1 /2) foci: (− 1 ±
vertices: (− 1 ±
asymptotes: y = 1/ 2 ±
5(x + 1) eccentricity:
y
x
(x − 2)^2 6
(y − 1)^2 5
= 1 center: (2, 1) foci: (2 ±
vertices: (2 ±
asymptotes: y = 1 ±
(x − 2)
eccentricity:
y
x
(x − 8)^2 25
(y − 3)^2 16
= 1 center: (8, 3) foci: (8 ±
vertices: (13, 3), (3, 3) asymptotes: y = 3 ± 4 /5(x − 8)
eccentricity:
y
x
(x − 1)^2 1 / 4
= 1 center: (1, 3)
foci: (1, 3 ±
vertices: (1, 2), (1, 4) asymptotes: y = 3 ± 2(x − 1)
eccentricity:
y
x
(y + 5)^2 18
(x + 1)^2 4
= 1 center: (− 1 , −5) foci: (− 1 , − 5 ±
vertices: (− 1 , − 5 ±
asymptotes: y = − 5 ±
√ 18 2 (x^ + 1) eccentricity:
The equation is
y^2 4
x^2 12
is found by solving (175)^2 = 400y. Solving this equation yields y = 76.5625. Therefore the towers are 76.5625 ft above the road.
10 , 0). The parabola is of the form x^2 = 4p(y−5) and contains the point (
Therefore the equation of the parabola is x^2 = − 200 y. To find the height of the dart 10 ft from the thrower, we need to find the y-value of the point on the parabola corresponding to the x-value of 10. Hence, we need to solve the equation 10^2 = − 200 y which yields y = − 1 / 2 f t. So 10 feet from the thrower the dart will be 0.5 ft below the thrower or it will be 4.5 ft from the ground.
y
x
3.6x10 7 a
b
c a-c
3.52x10 7
c^2 = a^2 − b^2 = 2. 7889 × 1018 − 18. 0625 × 106 = 2. 78. 89 × 1016 − 18. 0625 × 1016 = 260. 8275 × 1016 = 2. 608275 × 1018.
Then c ≈ 1. 615 × 109 and the eccentricity is
c a
P
center of earth
center of elliptical orbit
satellite
200 mi 1000 mi
and the equation is
x^2 46002
y^2 (
a = 5 and b = 15 so the equation of the doorway is y =
x^2 25
. The height of the
doorway at a point on the base 4 ft from the center is y =
= 12 ft.
ellipse shifted ellipse center (0, 1) (4, 1) vertices (− 2 , 1), (2, 1), (0, −2), (0, 4) (2.1), (6.1), (4. − 2), (4.4) foci (0, 1 −
ellipse shifted ellipse center (1, 4) (− 4 , 7) vertices (− 2 , 4), (4, 4), (1, 3), (1, 5) (− 7 , 7), (− 1 , 7), (− 4 , 6), (− 4 .8) foci (1 − 2
y^2 144
x^2 25
(b) Conjugate hyperbolas have the same asymptotes and do not intersect.
(y + 5/2)^2 5
(x − 3 /2)^2 5
= 1, The equations of the asymptotes are y = 7/ 2 −x and x = 1+x. These lines are perpendicular, thus the hyperbola is a rectangular hyperbola. (b) The hyperbola in Problem 50 is a rectangular hyperbola.
y
x
y
x
y
x
y
x
y = x x = sin t y = sin t
y
x
y
x
y = x^2 x = −
t y = t t ≥ 0
y
x
y
x
y =
x^2 4
− 1 x = 2t y = t^2 − 1 − 1 ≤ t ≤ 2
y
x
y
x
y = −x^2 x = at y = −e^2 t t ≥ 0