




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
Solución paso a paso de los ejercicios del libro Bird (2002) 2da Ed.
Tipo: Ejercicios
Subido el 15/07/2021
1 documento
1 / 761
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
a. Table E .l gives Tc = 126.2 K, pc = 33.5 atm, and p c = 180 x 10~6 g/cm-s for N2. The reduced conditions for the viscosity estimation are then:
pr - P/ Pc = (1000 + 14.7)/33.5 x 14.7 = 2.
Tr = T / T c = (273.15 + (68 - 32)/1.8)/126.2 = 2. At this reduced state, Fig. 1.3-1 gives pr = 1.15. Hence, the predicted viscosity
into the requested units by use of Table F.3-4:
Equation 1.4-14, with molecular parameters from Table E .l and collision integrals from Table E.2, gives the following results:
For O2: 293.15/113 =
M = 32.00, <r = 3.433A , e/K = 113 K. Then at 20°C, k T / e =
- 2.594 and = 1.086. Equation 1.4-14 then gives
0 ^ 0 i ^ - 5 V32.00 x 293. /x = 2.6693 x IO 77— — — — r (3.433)2 x 1. = 2.02 x 10-4 g/cm-s = 2.02 x 10~5 Pa-s = 2.02 x 10-2 mPa-s.
The reported value in Table 1.1-3 is 2.04 x 10 2 mPa-s. o For N2: 293.15/99.8 =
M = 28.01, a = 3.667A , s / k = 99.8 K. Then at 20°C, k T / e = = 2.937 and = 1.0447. Equation 1.4-14 then gives
, , V28.01 x 293. a = 2.6693 x 10 5 *, ** (3.6672 x 1. = 1.72 x 10-4 g/cm-s = 1.72 x 10~5 Pa-s = 1.72 x 10-2 mPa-s.
The reported value in Table 1.1-3 is 1.75 x 10 2 mPa-s.
For CH4, M = 16.04, a = 3.780A , s / k = 154 K. Then at 20°C, k T / e 293.15/154 == 1.904 and = 1.197. Equation 1.4-14 then gives
^ - 5 ^ 1 6 .0 4 x 293. r (3.780)2 x 1. = 1.07 x 10-4 g/cm-s = 1.07 x 1 0 "5 Pa-s = 1.07 x 10-2 mPa-s.
The reported value in Table 1.1-3 is 1.09 x 10 2 mPa-s.
The data for this problem are as follows:
Component M 1(H2) 2. 2(CC12F 2) 120.
/i, poise x 106
Insertion of these data into Eq. 1.4-16 gives the foloowing coefficients for mixtures of H2 and Freon-12 at this temperature:
$ n = $ 22 = 1.
$ 2 1
Equation 1.4-15 then gives the predicted mixture viscosities: 1 = (^) £ i = £ 2 = A : =^ B :=^ A + B = 1 — x 2 (^) £ ®y3$l/8 (^) £/»$2/> ^1/^ 1/£1 x 2 ^ / £ 2 /^mix 19 ^obs,poise X 10 0.00 3.934 1.000 0.0 124.0 (124.0)^ 124. 0.25 3.200 0.773 6.9 120.3 127.2 128. 0.50 2.467 0.546 18.1 113.6 131.7 131. 0.75 1.734 0.319 38.2 97.2 135.4 135. 1.00 1.000 0.092^ 88.4 0.0 (88.4)^ 88.
a. The calculated values for Eq. 1.5-9 at 0°C and 100° C are as follows: T,K (^) 273.15 373. p, g/cm 3 0.9998 0. V = M / p, cm3/g-mole 18.01 18. At7vap,Tt, cal/g-mole= 897.5 x 18.016 x 252.16/453.59 8989. 8989. A U ^ tJ R T ^ 8989/1.98721 / T 16.560 12. exp 0.408z*7 vap,T6/ R T 859.6 140. N h / V , g/cm-s 2.22 x 10“ 4 2.12 x 10 Predicted liquid viscosity, g/cm-s 0.19 0. b. The predicted values for Eq. 1.5-11 at 0°C and 100°C (^) are:
~ TJC 273.15^ 373. N h / V , g/cm-s 2.22 x 1 0 "4 2.12 x 10 exp(3.8Tft/T) 179.7 (^) 44. Predicted liquid viscosity, g/cm-s 0.0398 0.
Summary of results: Temperature, °C (^0 ) Observed viscosity, centipoise[=]g/cm-sxl00 1.787 0. Prediction of Eq. 1.5-9 19. 2. Prediction of Eq. 1.5-11 3.98 0.
Both equations give poor predictions. This is not surprising, since the empirical formulas in Eqs. 1.5-8 et stq. are inaccurate for water and for other associated liquids.
1 A .7 M olecular velocity and m ean free p ath.
From eq. 1.4-1, the mean molecular velocity in O2 at 273.2 K is
>8RT 1 8 x 8.31451 x 107 x 273. u = (^) = 4.25 x 104 cm /s 7 tM V 7r x 32.
From eq. 1.4-3, the mean free path in O2 at 1 atm and 273.2 K is
R T 82.0578 x 273. A = V2 tt d2pN /2?r(3 x 10~8 )2 x 1 x 6.02214 x 1023
= 9.3 x 10 6 cm
Hence, the ratio of the mean free path to the molecular diameter is (9.3 x 10- 4 /3 x 10- 8 ) = 3.1 x 104 under these conditions. At liquid states, on the other hand, the corresponding ratio would be on the order of unity or even less.
/£eff _ 1 + _J_*
1 1 0^5 a^ ^ +•
= l + f 0 ( l + e + £ 2 +•••) + -^ 0 2 (1 + 2 e + - ••)+ ^ f 0 3 (!+•••)+•
8 2 0O Vo
1C.2 The wall collision frequency
= n-y *L 2 irni
a. The volume flow rate w/p per unit wall width W is obtained from Eq. 2.2-25: w i/Re (1.0037 x 1 0 "2)(10) = 2.509 x 10-2 cm2/s pW 4 Here the kinematic viscosity v for liquid water at 20°C was obtained from Table 1.1-
w = 0.02509 cm2/s x pW ' 3785. = 0.727 U.S. gal/hr-ft
gal/cm 2 x 30.48 cm /ft x 3600 s/hr
b. The film thickness is calculated from Eqs. 2.2-25 and 2.2-22 as
3 u w g cos 0 pW Zv i/Re
1/
1/
g cos /3 4 J 3 x 1.0037 x 10“ 2 (980.665)(1.0)
(2.509 x 10“ 2)
= 0.00361 in.
1/ = 0.009167 cm
Assuming the flow to be laminar, we use Eq. 2.4-17 to calculate the volume flow rate w/p, with the specifications
k = 0.495/1.1 = 0. H = 136.8 (lbm/ft-hr)(l hr/3600s) = 3.80 x 10-2 lbm/ft-s (Vo —V l ) = (5.39 psi)(4.6330 x 103 poundals/ft2/psi) = 2.497 x 104 lbm/ft- •-s R = 1.1 in. = 1.1/12 ft
Here Appendix F has been used for the conversions of units. With these specifica tions, Eq. 2.4-17 gives
w P
(tt)( 2.497 x 104)(1.1/12) (8)(3.80 x 10~2)(27)
ln (l/0.45)
= (0.49242) (1 - 0.04101)
ln (l/0.495) = (0.6748)[0.1625] = 0.110 ft3/s
As a check on our assumption of laminar flow, we calculate the Reynolds num ber: 2R(1 — k ) ( v z) p 2 w Re = --------------------- = ————------ r p, TrRp(l + K) = __________ 2(0.110X80.3) __________ = (3.1416)(1.1/12)(3.80 x 1 0 -2)(1.45) This value is well within the laminar range, so our assumption of laminar flow is confirmed.
2 A .4 Loss o f cataly st particles in stack gas.
a. Rearrangement of Eq. 2.6-17 gives the terminal velocity
vt = _D(p3_* - p)g/lSfi
in which D is the sphere diameter. Particles settling at vt greater than the centerline gas velocity will not go up the stack. Hence, the value of D that corresponds to Vt = 1.0 ft/s will be the maximum diameter of particles that can be lost in the stack gas of the present system.
Conversions of data to cgs units give
vt = (1 ft/s)(12 x 2.54 cm /ft) = 30.48 cm /s p = (0.045 lbOT/ft3)(453.59 g/lbm)((12 x 2.54)~3 ft3/cm 3) = 7.2 x 10~4 g/cm 3
Hence,
Dr,
lSpvt (p* ~ P)
(1.2 - 7.2 x 10_4)(980.7)
= /l.21 x 10-4 = 1.1 x 10 2 cm = 110 microns
b. Equation 2.6-17 was derived for R e< < 1, but holds approximately up to R e = l. For the system at hand,
Re =
Dvtp _ (1.1 x 10- 2 )(30.5)(7.2 x 10“ 4) fi ~ (0.00026)
Hence, the result in a. is approximately correct. Methods are given in Chapter 6 for solving problems of this type without the creeping-flow assumption.
2-