




























































































Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Prepara tus exámenes
Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity
Prepara tus exámenes con los documentos que comparten otros estudiantes como tú en Docsity
Los mejores documentos en venta realizados por estudiantes que han terminado sus estudios
Estudia con lecciones y exámenes resueltos basados en los programas académicos de las mejores universidades
Responde a preguntas de exámenes reales y pon a prueba tu preparación
Consigue puntos base para descargar
Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium
Comunidad
Pide ayuda a la comunidad y resuelve tus dudas de estudio
Descubre las mejores universidades de tu país según los usuarios de Docsity
Ebooks gratuitos
Descarga nuestras guías gratuitas sobre técnicas de estudio, métodos para controlar la ansiedad y consejos para la tesis preparadas por los tutores de Docsity
tiene la solucion de todos los ejercicios del libro
Tipo: Guías, Proyectos, Investigaciones
1 / 153
Esta página no es visible en la vista previa
¡No te pierdas las partes importantes!
En oferta
Problem 1. Part (a): Rc =
lc μAc
lc μrμ 0 Ac
= 0 A/Wb
Rg =
g μ 0 Ac = 1. 017 × 106 A/Wb
part (b):
Rc + Rg
= 1. 224 × 10 −^4 Wb
part (c):
λ = N Φ = 1. 016 × 10 −^2 Wb
part (d):
λ I
= 6. 775 mH
Problem 1. part (a): Rc =
lc μAc
lc μrμ 0 Ac
= 1. 591 × 105 A/Wb
Rg =
g μ 0 Ac
= 1. 017 × 106 A/Wb
part (b):
Rc + Rg
= 1. 059 × 10 −^4 Wb
part (c):
λ = N Φ = 8. 787 × 10 −^3 Wb
part (d):
λ I = 5. 858 mH
part (c):
Problem 1. part (a):
Hg =
2 g ; Bc =
Ag Ac
Bg = Bg
x X 0
part (b): Equations
2 gHg + Hclc = N I; Bg Ag = BcAc
and
Bg = μ 0 Hg; Bc = μHc
can be combined to give
Bg =
2 g +
μ 0 μ
Ag Ac
(lc + lp)
2 g +
μ 0 μ
1 − (^) Xx 0
(lc + lp)
Problem 1. part (a):
g +
μ 0 μ
(lc + lp) μ 0 N
part (b):
μ = μ 0
= 1012 μ 0
g +
μ 0 μ
(lc + lp) μ 0 N
part (c):
Problem 1.
g =
μ 0 N 2 Ac L
μ 0 μ
lc = 0. 353 mm
Problem 1. part (a):
lc = 2π(Ro − Ri) − g = 3. 57 cm; Ac = (Ro − Ri)h = 1. 2 cm^2
part (b):
Rg = g μ 0 Ac
= 1. 33 × 107 A/Wb; Rc = 0 A/Wb;
part (c):
Rg + Rg
= 0. 319 mH
part (d):
Bg(Rc + Rg )Ac N
part (e):
λ = N BgAc = 10. 5 mWb
Problem 1. part (a): Same as Problem 1. part (b):
Rg =
g μ 0 Ac
= 1. 33 × 107 A/Wb; Rc =
lc μAc
= 3. 16 × 105 A/Wb
Problem 1. part (a):
R^21 + R^22 = 4. 27 cm
part (b):
μ 0 AgN 2 g +
μ 0 μ
lc
= 251 mH
part (c): For ω = 2π60 rad/sec and λpeak = N Ag Bpeak = 0.452 Wb:
(i) Vrms = ωλpeak = 171 V rms
(ii) Irms =
Vrms ωL
= 1. 81 A rms
(iii) Wpeak = 0. 5 L(
2 Irms)^2 = 0. 817 J
part (d): For ω = 2π50 rad/sec and λpeak = N AgBpeak = 0.452 Wb:
(i) Vrms = ωλpeak = 142 V rms
(ii) Irms = Vrms ωL
= 1. 81 A rms
(iii) Wpeak = 0. 5 L(
2 Irms)^2 = 0. 817 J
Problem 1. part (a):
part (b):
Emax = 4f N AcBpeak = 3 45 V
Problem 1. part (a):
AcBsat
= 99 turns; g =
μ 0 N I Bsat
μ 0 lc μ
= 0. 3 6 mm
part (b): From Eq.3.
Wgap =
AcgB^2 sat 2 μ 0
= 0. 207 J; Wcore =
AclcB^2 sat 2 μ
Thus Wtot = Wgap + Wcore = 0.252 J. From Eq. 1.47, (1/2)LI^2 = 0.252 J. Q.E.D.
Problem 1. part (a): Minimum inductance = 4 mH, for which g = 0.0627 mm, N = 20 turns and Vrms = 6.78 V part (b): Maximum inductance = 144 mH, for which g = 4.99 mm, N = 1078 turns and Vrms = 224 V
Problem 1. part (a):
μ 0 πa^2 N 2 2 πr
= 56. 0 mH
part (b): Core volume Vcore ≈ (2πr)πa^2 = 40.0 m^3. Thus
W = Vcore
2 μ 0
part (c): For T = 30 sec,
di dt
(2πrB)/(μ 0 N ) T
= 2. 92 × 103 A/sec
v = L di dt
Problem 1. part (a):
Acu = fwab; Volcu = 2ab(w + h + 2a)
part (b):
part (b):
(i) B 1 = 0; B 2 =
μ 0 N 2 I 2 g 2
(ii) λ 1 = N 1 A 2 B 2 = μ 0 N 1 N 2
g 2
(iii) λ 2 = N 2 A 2 B 2 = μ 0 N 22
g 2
part (c):
(i) B 1 =
μ 0 N 1 I 1 g 1
μ 0 N 1 I 1 g 2
μ 0 N 2 I 2 g 2
(ii) λ 1 = N 1 (A 1 B 1 + A 2 B 2 ) = μ 0 N 12
g 1
g 2
I 1 + μ 0 N 1 N 2
g 2
(iii) λ 2 = N 2 A 2 B 2 = μ 0 N 1 N 2
g 2
I 1 + μ 0 N 22
g 2
part (d):
g 1
g 2
; L 22 = μ 0 N 22
g 2
; L 12 = μ 0 N 1 N 2
g 2
Problem 1.
lA μAc
l 1 μAc
l 2 μAc
; Rg =
g μ 0 Ac
part (a):
R 1 + R 2 + Rg + RA/ 2
N 12 μAc l 1 + l 2 + lA/2 + g (μ/μ 0 )
RA + RA||(R 1 + R 2 + Rg )
N 2 μAc lA
lA + l 1 + l 2 + g (μ/μ 0 ) lA + 2(l 1 + l 2 + g (μ/μ 0 ))
part (b):
N 2 (R 1 + R 2 + Rg ) RA(RA + 2(R 1 + R 2 + Rg ))
N 2 μAc lA
l 1 + l 2 + g (μ/μ 0 ) lA + 2(l 1 + l 2 + g (μ/μ 0 ))
RA + 2(R 1 + R 2 + Rg )
−N N 1 μAc lA + 2(l 1 + l 2 + g (μ/μ 0 ))
part (c):
v 1 = d dt
[LA1iA + LB1iB] = LA d dt
[iA − iB]
Problem 1. part (a):
μ 0 N 1 N 2 2 g
[D(w − x)]
part (b):
v 2 = dλ 2 dt
dL 12 dt
N 1 N 2 μ 0 D 2 g
dx dt
= −
N 1 N 2 μ 0 D 2 g
% ωw 2
cos ωt
Problem 1. part (a):
N 1 i 1 2 π(Ro + Ri)/ 2
N 1 i 1 π(Ro + Ri)
part (b):
v 2 =
d dt [N 2 (tn∆)B] = N 2 tn∆
dB dt
part (c):
vo = G
v 2 dt = GN 2 tn∆B
part (b): Area = 191 Joules part (c): Core loss = 1.50 W/kg.
Problem 1. Brms = 1.1 T and f = 60 Hz,
Vrms = ωN AcBrms = 46. 7 V
Core volume = Aclc = 1. 05 × 10 −^3 m^3. Mass density = 7. 65 × 103 kg/m^3. Thus, the core mass = (1. 05 × 10 −^3 )(7. 65 × 103 ) = 8.03kg. At B = 1.1 T rms = 1.56 T peak, core loss density = 1.3W/kg and rms VA density is 2.0 VA/kg. Thus, the core loss = 1. 3 × 8 .03= 10 .4 W. The total exciting VA for the core is 2. 0 × 8 .03= 16 .0 VA. Thus, its reactive component is given by
The rms energy storage in the air gap is
Wgap =
gAcB^2 rms μ 0 = 3. 61 Joules
corresponding to an rms reactive power of
VARgap = ωWgap = 1361 Joules
Thus, the total rms exciting VA for the magnetic circuit is
VArms = sqrt 10. 42 + (1361 + 12.2)^2 = 1373 VA
and the rms current is Irms = VArms/Vrms = 29.4 A.
Problem 1. part(a): Area increases by a factor of 4. Thus the voltage increases by a factor of 4 to e = 1096cos 377 t. part (b): lc doubles therefore so does the current. Thus I = 0.26 A. part (c): Volume increases by a factor of 8 and voltage increases by a factor of 4. There Iφ,rms doubles to 0.20 A. part (d): Volume increases by a factor of 8 as does the core loss. Thus Pc = 128 W.
Problem 1. From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at (approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy product is 1. 69 × 105 J/m^3. Thus,
Am =
2 cm^2 = 3.40 cm^2
and
lm = − 0 .2 cm
μ 0 (− 3. 60 × 105 )
= 0.3 5 cm
Thus the volume is 3. 40 × 0 .3 5 = 1.20 cm^3 , which is a reduction by a factor of 5.09/1.21 = 4.9.
Problem 1. From Fig. 1.19, the maximum energy product for neodymium-iron-boron occurs at (approximately) B = 0.63 T and H = -470 kA/m. Thus the maximum energy product is 2. 90 × 105 J/m^3. Thus,
Am =
2 cm^2 = 2.54 cm^2
and
lm =^ −^0 .2 cm
μ 0 (− 4. 70 × 105 )
= 0.27 cm
Thus the volume is 2. 54 × 0 .25 = 0.688 cm^3 , which is a reduction by a factor of 5.09/0.688 = 7.4.
Problem 1. From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at (approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy product is 1. 69 × 105 J/m^3. Thus, we want Bg = 1.2 T, Bm = 0.47 T and Hm = −360 kA/m.
hm = −g
Hg Hm
= −g
Bg μ 0 Hm
= 2. 65 mm
Am = Ag
Bg Bm
= 2πRh
Bg Bm
= 26. 0 cm^2
Rm =
Am π
= 2. 87 cm
Problem 1. From Fig. 1.19, the maximum energy product for neodymium-iron-boron oc- curs at (approximately) Bm = 0.63 T and Hm = -470 kA/m. The magnetization curve for neodymium-iron-boron can be represented as
Bm = μRHm + Br
where Br = 1.26 T and μR = 1. 067 μ 0. The magnetic circuit must satisfy
Problem 2. At 60 Hz, ω = 120π.
primary: (Vrms)max = N 1 ωAc(Brms)max = 2755 V, rms
secondary: (Vrms)max = N 2 ωAc(Brms)max = 172 V, rms
At 50 Hz, ω = 100π. Primary voltage is 2295 V, rms and secondary voltage is 143 V, rms.
Problem 2.
2 Vrms ωAcBpeak
= 167 turns
Problem 2.
= 3 turns
Problem 2. Resistance seen at primary is R 1 = (N 1 /N 2 )^2 R 2 = 6.25Ω. Thus
and
Problem 2. The maximum power will be supplied to the load resistor when its im- pedance, as reflected to the primary of the idealtransformer, equals that of the source (2 kΩ). Thus the transformer turns ratio N to give maximum power must be
Rs Rload
Under these conditions, the source voltage will see a total resistance of Rtot = 4 kΩ and the current will thus equal I = Vs/Rtot = 2 mA. Thus, the power delivered to the load will equal
Pload = I^2 (N 2 Rload) = 8 mW
Here is the desired MATLAB plot:
Problem 2. The maximum power will be supplied to the load resistor when its im- pedance, as reflected to the primary of the idealtransformer, equals that of the source (2 kΩ). Thus the transformer turns ratio N to give maximum power must be
Rs Rload
Under these conditions, the source voltage will see a total impedance of Ztot = 2 + j2 kΩ whose magnitude is 2
2 kΩ. The current will thus equal I = Vs/|Ztot| = 2
2 mA. Thus, the power delivered to the load will equal
Pload = I^2 (N 2 Rload) = 16 mW
Here is the desired MATLAB plot:
Problem 2. part (a):
part (b):
Iˆload = 30 kW 230 V
ejφ^ = 93. 8 ejφ^ A
where φ is the power-factor angle. Referred to the high voltage side, IˆH =
VˆH = ZH IˆH
Thus, (i) for a power factor of 0.85 lagging, VH = 2413 V and (ii) for a power factor of 0.85 leading, VH = 2199 V. part (c):
Problem 2. part (a):
part (b): Following methodology of Problem 2.11, (i) for a power factor of 0.85 lagging, VH = 4956 V and (ii) for a power factor of 0.85 leading, VH = 4000 V. part (c):
Problem 2. part (a): Iload = 160 kW/2340 V = 68.4 A at = cos−^1 (0.89) = 27. 1 ◦
V^ ˆt,H = N ( VˆL + ZtIL)
which gives VH = 33.7 kV. part (b):
Vˆsend = N ( VˆL + (Zt + Zf )IL)