Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

ejercicios de integrales, Ejercicios de Cálculo

ejercicios de integrales ejercicios de integrales ejercicios de integrales

Tipo: Ejercicios

2019/2020

Subido el 29/08/2020

hugo-mesa
hugo-mesa 🇨🇴

5

(1)

4 documentos

1 / 1

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1

Vista previa parcial del texto

¡Descarga ejercicios de integrales y más Ejercicios en PDF de Cálculo solo en Docsity!

386 Capítulo 7 Técnicas de integración Revisión de conceptos 1. La diferenciación de una función elemental es directa, pero existen casos en donde la antidorivada de una función elemental no puede expresarse como un(a) . 2. La sustitución ee - 1 +47 transforma fea +0 dxen 3, La sustitución u = fra +10) due translorma fora +) dxa 4, La sustitución u =1 +sen x translorma 02 f (L + senw) cos x dx en la Conjunto de problemas 7.1 En los problemas del 1 al 54 realice las integraciones indicadas. fo - 2% dx 2 > 3. Pu LLP dx de 3 6. 7 5 o a+ 2dz 10. / 1 12, f: 52 sen zdz 13. / mis - e [as A 14 sentx Y”. A de x= 1 fsen(In 4? 19. ( ) dx x 26. / 20% sen x dx lo / sen(dr — 1) 28. | ——— dt 1 send(ár — 1) ¿ase el problema 56. f$ ./ 30 Jose je / ay taz e%) dx 3 po O de secx = a — a Peos(r — 2 + cos 33. pl de 34 paez de seno 2) sent 2 Peos(A — 2) ese2r 35 | 36. de seníó - 2) VI + cot2r gun vr 5 37. de 38. (0 + De dt / 1 + 41 4. fas Bx dx 41 [fx senha? dx 42. 1 == dx / v9 = q s/ Fa va UVa? -1 m2 Lar ol A. f E lo 16 + co |? 1 4 E 48. | =G4 ” la Pas" / z 49. 50. == Farm its 5. aro x+1 5. A 3x 5 97 a 18 110 V16 + 6x = de tan x 53. 1V2?—-9 55. Encuentre la longitud de la curva y Vscdx 4 In(cos x) entre x=0 $ 5/4 56. Fstablezca la identidad Senx, 00sx scox cos. 1 + senx y después utilícela para deducir la fórmula ] ¡2 57. Evalúe / a cxdx = Inlsecx + tanx] + € Usen x o HELL dx. Sugerencia: haga la sustitución 14 cos? y 4=x ar en la integral definida y después utilice propiedades de la simetría. 58. Sea R la región acotada por y =sen xy y =cos x entre x 7/4 y x=31/4. Encuentre el volumen del sólido obtenido cuando so hace girar R alrededor de x= - 7/4. Sugerencia: use cascarones cilíndricos para escribir una sola integral, haga la sustitución w=x — 7/3 y apli- que propiedades de la simetría. Respuestas a la revisión de conceptos: 1. función clemental 2 fas 3. e 4 fos . 1