Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Control Automatico de procesos solucionario, Ejercicios de Control de Procesos

solucionario de control de procesos de ingeniería química tercera edición Carlos A. Smith, Armando B. Corripio

Tipo: Ejercicios

2017/2018

Subido el 10/03/2018

luz-carolina-gonzale
luz-carolina-gonzale 🇨🇴

4.7

(29)

1 documento

1 / 682

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE
MUCHOS DE ESTOS LIBROS GRATIS EN
DESCARGA DIRECTA
SIGUENOS EN:
VISITANOS PARA DESARGALOS GRATIS.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Vista previa parcial del texto

¡Descarga Control Automatico de procesos solucionario y más Ejercicios en PDF de Control de Procesos solo en Docsity!

LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE

MUCHOS DE ESTOS LIBROS GRATIS EN

DESCARGA DIRECTA

SIGUENOS EN:

VISITANOS PARA DESARGALOS GRATIS.

(d) Automatic sprinkler system for fires.

The controller is On/Off and the control i feedback with respect to temperature.,

M, D, A: temperature element/controller TE/C. Usually a bi-metallic strip that pushes the latch on the mechanism holding the slice of bread. The bread is released and the heating element de-energized when the temperature reaches the value set by the set point. (^) SP TE/C

(c) Toaster.

The controller is On/Off and the control is feedback on the temperature variable.

M: Temperature element TE , usually a gas-filled bulb

D: Temperature controller TC.

A: Solenoid S that operates the heating element in the oven

(b) Cooking oven.

TE

TC

S

SP

The controller is On/Off and the control is feedback.

M: Temperature element TE in thermostat TE/C

D: Mercury switch in thermostat TE/C

A: Solenoid S that turns unit (AC/H) on and off. TE/C^

S

AC /H

SP

(a) House air-conditioning/heating.

Identificaton of the M-D-A components, controller type, instrumentation diagram, and type of control.

Problem 1-1. Automation in daily life.

Smith & Corripio, 3rd edition

Smith & Corripio, 3rd edition

Problem 1-2. Automatic shower temperature diagram.

TC TE

Hot water

Cold water

S

SP

M: temperature sensor TE , a gas-filled bulb

D: temperature controller TC , mechanilly integrated to the sensor, but with a signa output

A: solenoid operated control valve on the hot water line.

The cold water valve is operated manually.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

F s( ) s s^2 +ω^2

s −i ⋅ω

s +i ⋅ω

= s^ −^ i^ ⋅ω+^ s+i^ ⋅ω

2 ⋅( s^ −i ⋅ω)(^ s +i ⋅ω)

= 2 s⋅

2 ⋅(^ s^2 +ω^2 )

= s s^2 +ω^2

s − i ⋅ω

e −^ (^ s^ −i^ ⋅ω)t ∞ 0

⋅ −^1

s + i ⋅ω

e −^ (^ s^ +i^ ⋅ω)t ∞ 0

∞ e −(^ s^ −i^ ⋅ω)t t

d 0

∞ e −(^ s^ +i⋅^ ω)t t

  • d

F s( ) 0

∞ cos ⋅ ωt⋅e −st t

= d 0

∞ e (^) t i ⋅ ωt−e − i⋅ωt 2

e −st

(c) f t( ) = cos⋅ ωt = d

F s( ) 1 s +a

F s( ) 0

∞ e −^ ate −st t

= d 0

∞ e −(^ s^ +a)t t

= d −^1 s + a

e −^ (^ s^ +a)t ∞ 0

= ⋅^1

s +a

(b) f t( ) = e −at^ where a is constant

F s( ) 1 s^2

F s( ) −t s

e −^ st ∞ 0

s (^0)

∞ e −st t

= + ⋅ d 0 − 0 1 s^2

e −^ st ∞ 0

= − ⋅^1

s^2

v −^1 s

du = dt = e −st

F s( ) By parts: u = t dv = e −^ stdt 0

∞ t e⋅ −st t

(a) f t( ) = t = d

F s( ) 0

∞ f t( ) e −st t

= d

Problem 2-1. Derivation of Laplace transforms from its definition

Smith & Corripio, 3rd. edition

s

s + 2

s + 1

= − ⋅^1

s

s + 2

s + 1

F s( ) 1 s

s + 2

s + 1 Used the linearity property. =

(d) f t( ) = u t( ) − e −t+t e⋅ −t F s( ) = L u t( ( )) − L e(^ −t)+L t e(^ ⋅ −t)^1

s

s + 1

(s + 1 ) 2

F s( ) 1 s

s + 1

( s + 1 ) 2

Used the linearity property. =^ +

(e) f t( ) = u t( − 2 ) 1 −e −^2 (^ t 2−)^ sin t( − 2 ) Let^ g t( ) = u t( ) 1(^ −e −^2 tsin t⋅) Then^ f t( ) = g t( − 2 )

F s( ) = e −^2 s^ G s( ) e −^2 s^1 s

(s + 2 ) 2 + 1

Used the real translation theorem and linearity. (^) F s( ) e −^2 s^1 s

(s + 2 ) 2 + 1

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Smith & Corripio, 3rd edition

Problem 2-2. Derive Laplace transforms from the properties and Table 2-1.

(a) f t( ) = u t( ) + 2 t⋅ +3 t ⋅ 2 F s( ) = L u t(^ ( ) + 2 t⋅ +3 t ⋅ 2 ) = L u t( ( )) + 2 L t⋅ ( )+3 L t⋅^ (^2 )

s

s^2

s^3

= + ⋅ F s( ) 1 s

s^2

s^3

Used the linearity property.

(b) f t( ) = e −^2 ⋅t^ (u t^ ( ) + 2 t⋅ +3 t ⋅ 2 ) F s( ) L u t(^ ( ) + 2 t⋅ +3 t ⋅ 2 )^

s + 2

= ⋅^1

s

s^2

s^3

 s + 2

s + 2

(s + 2 ) 2

(s + 2 ) 3

F s( ) 1 s + 2

(s + 2 ) 2

(s + 2 ) 3

Used the complex translation theorem. =^ +

(c) f t( ) = u t( ) + e −^2 t−2e −t F s( ) = L u t(^ ( ) + e −^2 t−2 e⋅ −t) = L u t( ( )) + L e(^ −^2 t)−2 L e⋅ (^ −t)

Must apply L'Hopital's rule:

s ∞

2 s( + 2 )

3 s( + 2 ) 2

lim = 1 Final value: →

t ∞

lim e −^2 t^ (^ u t( ) + 2 t⋅ +3t 2 )^ = 0 ⋅∞

→ s 0

s 1 s + 2

(s + 2 ) 2

(s + 3 ) 2

lim = 0 L'Hopital's rule:^ →

t ∞

2e 2t

2e 2t

  • 6t 2e 2t

lim = 0 → Check!

(c) f t( ) = u t( ) + e −^2 t−2e −t F s( ) 1

s

s + 2

s + 1

Initial value:

t 0

lim (^ u t( ) + e −^2 t−2e −t)^ = ( 1 + 1 − 2 ) + 0

→ s ∞

s 1 s

s + 2

s + 1

lim = → L'Hopital's rule:

s ∞

lim = 0 → Final value:

t ∞

lim (u t^ ( ) + e −^2 t−2e −t)^ = 1 + 0 + 0 = 1

→ s 0

s 1 s

s + 2

s + 1

lim = 1 + 0 + 0 = 1 →

Smith & Corripio, 3rd edition

Problem 2-3. Initial and final value check of solutions to Problem 2-

(a) f t( ) = u t( ) + 2 t⋅ +3t 2 F s( ) 1

s

s^2

s^3

Initial value:

t 0

lim (^ u t( ) + 2t +3t 2 )^ = 1

→ s ∞

s 1 s

s^2

s^3

s ∞

s

s^2

lim = 1 →

lim = → Final value:

t ∞

lim (u t^ ( ) + 2t +3t 2 )^ = ∞

→ s 0

s

s^2

lim = ∞ →

Check!

(b) f t( ) = e −^2 t^ (u t^ ( ) + 2t +3t 2 ) F s( ) 1

s + 2

(s + 2 ) 2

(s + 2 ) 3

Initial value:

t 0

lim e −^2 t^ (^ u t( ) + 2t +3t 2 )

→ s ∞

s 1 s + 2

(s + 2 ) 2

(s + 2 ) 3

lim =

= 1 1( + 0 + 0 ) = 1

Smith & Corripio, 3rd edition

Problem 2-4. Laplace transform of a pulse by real translation theorem

f t( ) = H u t⋅ ( )−H u t⋅ ( −T)

F s( ) H^1 s

⋅ H e⋅ −sT^1 s

= − ⋅ H^1 e^ − −sT s

= ⋅ F s( ) H s

= (^1 −e −sT)

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

(^00 2 )

2 fd ( )t

t

(^00 2 )

2 f t( )

t

f t( ) e

t 0 τ (^) e

−t := ⋅ τ fd ( )t^ u t(^ −t^0 )^ e

−( t t− 0 )

:= ⋅ τ

u t( ) 0 if t < 0 1 ift ≥ 0

Sketch the functions: (^) t 0 := 1 τ := 1 := F s( )^

τ e

− t 0 ⋅s ⋅ τ ⋅s + 1

The result to part (b) agrees with the real translation theorem.

e

− t 0 ⋅ s − 1

s 1 τ

⋅ e

s 1 τ

− ⋅λ ⋅ ∞ 0

= ⋅ e

− t 0 ⋅s

s 1 τ

= τ^ e

− t 0 ⋅s ⋅ τ ⋅s + 1

F s( ) −t 0

u (^ λ)^ e λ

− λ τ (^) e −s^ (^ λ^ +t 0 )

= (^) ⌡ d e

− t 0 ⋅s

0

e λ

s 1 τ

− λ

= ⋅⌡ d Let λ = t −t 0

F s( ) 0

u t( −t 0 ) e t

−( t t− 0 ) τ (^) e −st

f t( ) u t( −t 0 ) e = d

−( t t− 0 )

= τ

(b) Function is delayed and zero from t = 0 to t = t 0 :

F s( ) τ^ e

t 0

⋅^ τ τ ⋅ s+ 1

F s( ) e =

t 0 τ 1 s 1 τ

= τ^ e

t 0

⋅^ τ τ ⋅ s+ 1

f t( ) e =

t 0 τ (^) e

−t = τ^ (from Table 2-1.1)

(a) Function is non-zero for all values of t > 0:

f t( ) e

−( t t− 0 )

= τ

Problem 2-5. Delayed versus non-delayed function

9 d^ Y 0( ) = 0

(^2) ⋅Y t( )

dt^2

⋅ 12 d Y t⋅ ( ) dt

Subtract initial steady state: + ⋅ + 4 Y t( ) = 8 X t( )

9 d^

(^2) ⋅y t( )

dt^2

⋅ 12 d y t⋅ ( ) dt

(d) + ⋅ + 4 y t( ) = 8 x t( ) − 4

Invert usingTable 2-1.1: Y t( ) = ( − 1 +1.134i)e ( − 0.5+0.441i)t (^) + (− 1 −1.134i)e ( − 0.5−0.441i)t+2 u t( )

Y s( ) −^1 +1.134i s + 0.5−0.441i

− 1 −1.134i s + 0.5+0.441i

s

A 3

s 0

9s^2 + 9s+ 4

lim = 2 →

A 2 = − 1 −1.134i =

9 2 0.441i( ⋅ ) ( −0.5 +0.441i)

A 1 =− 1 +1.134i s − 0.5+0.441i

9 s( + 0.5+0.441i) s

lim →

A 1

s + 0.5−0.441i

A 2

s + 0.5+0.441i

A 3

s

Y s( ) 8 9 s( + 0.5−0.441i) s( + 0.5+0.441)s

Solve for Y(s), expand: =

A 2

s −1.

9 s( +0.255)s

lim = = 0. →

A 3

s 0

9 s( +0.255) s( +1.745)

lim = = 2. →

Y s( ) −2. s +0.

s +1.

s

Invert with Table 2-1.1: (^) Y t( ) = −2.342 e − 0.255t (^) + 0.342e − 1.745t+2 u t( )

(c) 9 d^

(^2) ⋅y t( )

dt^2

⋅ 9 d y t⋅ ( ) dt

  • ⋅ + 4 y t( ) = 8 x t( ) − 4

Subtract initial steady state: 9 d 2 ⋅Y t( ) dt^2

⋅ 9 d Y t⋅ ( ) dt

  • ⋅ + 4 Y t( ) = 8 X t( ) Y 0( ) = 0

Laplace transform: ( 9s 2 + 9s+ 4 )Y s( ) = 8 X s( ) 8 1

s

r 1 −^9

+^2 −4 9⋅ ⋅ 4

:= r 2 −^9

−^2 −4 9⋅ ⋅ 4

Find roots: :=^ r^1 =−0.5^ +0.441i r 2 =−0.5 −0.441i

(^3) A 2 = 0.027 −0.022i 2 2 2.598i( ⋅ ) ( − 1 +2.598i) (− 1.5 +2.598i)

=0.027 +0.022i

A 1

s − 1.5+2.598i

2 s( + 1.5+2.598i) s( +0.5)s

lim = 0.027 +0.022i →

A 1

s + 1.5−2.598i

A 2

s + 1.5+2.598i

A 3

s +0.

A 4

s

Y s( ) 3 2 s( + 1.5−2.598i) s( + 1.5+2.598i) s( +0.5)s

Solve for Y(s) and expand: =

polyroots

− 1.5 −2.598i − 1.5 +2.598i − 0.

Find roots: =

( 2s^3 + 7s^2 + 21s+ 9 )Y s( ) = 3 X s( ) 3 1

s

Laplace transform: =

Y 0( ) = 0

2 d^

(^3) ⋅Y t( )

dt^3

⋅ 7 d^

(^2) ⋅ (^) Y t( )

dt^2

  • ⋅ 21 d Y t⋅ ( ) dt

Subtract initial steady state: + ⋅ + 9 Y t( ) = 3 X t( )

2 d^

(^3) ⋅y t( )

dt^3

⋅ 7 d^

(^2) ⋅y t( )

dt^2

  • ⋅ 21 d y t⋅ ( ) dt

(e) + ⋅ + 9 y t( ) = 3 x t( )

Y t( ) −^4 3

 t − 2

Invert using Table 2-1.1: = e −^ 0.667t^ +2 u t( )

A 3

s 0

9 s( +0.667) 2

lim = 2 →

A 2

s −0.

d ds

9s

 s −0.

9s^2

lim = − 2 →

lim =

A 1 =

s −0.

9s

lim =

Y s( ) 8 9 s( +0.667) 2 s

A 1

( s +0.667) 2

A 2

s +0.

A 3

s

Solve for Y(s) and expand: = +

r 2 =−0.

r 2 −^12 12 r 1 =−0.

−^2 −4 9⋅ ⋅ 4

r 1 −^12 12 :=

+^2 −4 9⋅ ⋅ 4

Find roots: :=

( 9s^2 + 12s+ 4 )Y s( ) = 8 X s( ) 8 1

s

Laplace transform: =

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

Y t( ) u t( − 1 ) −^8 3

 ⋅( t − 1 )− 8

 ⋅e −^ 0.667⋅(^ t 1−)+8 e⋅ −^ 0.333⋅(^ t 1−)

Apply the real translation theorem in reverse to this solution:

Y s( ) −^8 3

( s +0.667) 2

s +0.

s +0.

= e −s

The partial fraction expansion of the undelayed signal is the same:

(Real translation theorem)

X s( ) e^

−s

s 1 3

X t( ) u t( − 1 ) e =

−( t 1−)

(b) Forcing function: =^3

Y t( ) −^8 3

 t − 8

Invert using Table 2-1.1: = e −^ 0.667t^ +8e −^ 0.333t

Y s( ) −^8 3

(s +0.667) 2

s +0.

s +0.

A 2

s −0.

d ds

9 s( +0.333)

 s −0.

9 s( +0.333) 2

lim = − 8 →

lim =

A 3

s −0.

9 s( +0.667) 2

lim = 8 →

A 1 =

s −0.

9 s( +0.333)

lim =

9 s( +0.667) 2 ( s +0.333)

A 1

(s +0.667) 2

A 2

s +0.

A 3

s +0.

Y s( ) 8

(9s 2 + 12s+ 4 ) s 1

X s( ) 1 s 1 3

X t( ) e From Table 2-1.1: =

−t

(a) Forcing function: =^3

9 d^ Y 0( ) = 0

(^2) ⋅Y t( )

dt^2

⋅ 12 d Y t⋅ ( ) dt

  • ⋅ + 4 Y t( ) = 8 X t( )

Problem 2-7. Solve Problem 2-6(d) with different forcing functions

Smith & Corripio, 3rd edition

(Final value theorem)

(b) 9 d 2 ⋅y t( )

dt^2

⋅ 18 d y t⋅ ( ) dt

  • ⋅ + 4 y t( ) = 8 x t( ) − 4

Subtract initial steady state: 9 d^

(^2) ⋅Y t( )

dt^2

⋅ 18 d Y t⋅ ( ) dt

  • ⋅ + 4 Y t( ) = 8 X t( ) Y 0( ) = 0

Laplace transform and solve for Y(s): Y s( ) 8 9s^2 + 18s+ 4

= X s( )

Find roots: r 1 −^18

+^2 −4 9⋅ ⋅ 4

2 9⋅ min

:= r 2 −^18

−^2 −4 9⋅ ⋅ 4

2 9⋅ min

:= r 1 =−0.255 min −^1

r 2 =−1.745 min −^1

Invert using Table 2-1.1: Y t( ) = A 1 ⋅ e −^ 0.255t+A 2 ⋅e −^ 1.745t

  • terms of X(s)

The response is stable and monotonic. The domnant root is: r 1 =−0.255 min −^1

Time for the response to decay to 0.67% of its initial value: −^5 r 1

=19.6 min

Final steady-state value for unit step input: s 0

s 8 9s^2 + 18s+ 4

s

lim →

(Final value theorem)

Smith & Corripio, 3rd edition

Problem 2-8. Response characteristics of the equations of Problem 2-

(a) d y t⋅ ( )

dt

  • 2 y t( ) = 5 x t( ) + 3

Initial steady state: 2 y 0( ) = 5 x 0( ) + 3

Subtract: d Y t⋅ ( ) dt

  • 2 Y t( ) = 5 X t( ) Y t( ) = y t( ) −y 0( ) X t( ) = x t( ) −x 0( )

Laplace transform: s Y s⋅ ( )+ 2 Y s( ) = 5 X s( ) Y 0( ) = y 0( ) −y 0( ) = 0

Solve for Y(s): Y s( ) 5 s + 2

= X s( )

A 1

s + 2

= + terms of X(s)

Invert using Table 2-1.1: Y t( ) = A 1 ⋅e −^2 t + terms of X(t)

The response is stable and monotonic.The dominant and only root is r :=− 2 min −^1

Time for response to decay to within 0.67% of its initial value: −^5 r

=2.5 min

Final steady-state value for unit step input: s 0

s 5 s + 2

s

lim →

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.

(Final value theorem) s^0

s 3 2s^3 + 7s^2 + 21s+ 9

s

lim →

Final steady state value for a unit step input: →

r 2

e −^ 1.5min^ Time for response to die out: =10 min

− (^1) T Decay ratio: =0.

T 2 π T =2.42 min 2.598min −^1

The period of the oscillations is: :=

The response is stable and oscillatory. The dominant root is r 2 =−0.5 min −^1

r

−1.5 −2.598i − 1.5 +2.598i − 0.

r polyroots = min −^1

:= min −^1

Find roots:

Y s( ) 3 2s^3 + 7s^2 + 21s+ 9

Laplace transform and solve for Y(s): = X s( )

2 d^

(^3) ⋅Y t( )

dt^3

⋅ 7 d^

(^2) ⋅ (^) Y t( )

dt^2

  • ⋅ 21 d Y t⋅ ( ) dt

Subtract initial steady state: + ⋅ + 9 Y t( ) = 3 X t( )

2 d^

(^3) ⋅y t( )

dt^3

⋅ 7 d^

(^2) ⋅y t( )

dt^2

  • ⋅ 21 d y t⋅ ( ) dt

(e) + ⋅ + 9 y t( ) = 3 x t( )

(Final value theorem) s^0

s 8 9s^2 + 12s+ 4

s

lim →

Final steady state value for a unit step input: → 2

r 1

Time required for the response to decay within 0.67% of its initial value: =7.5 min

The response is stable and monotonic. The dominant root is r 1 =−0.667 min −^1

Value of k: (^) k −M^ ⋅g y 0

:= k 1.816 N m

Laplace transform: (^) M s ⋅ 2 Y s( ) + k Y s⋅ ( ) = F s( )

Solve for Y(s): (^) Y s( ) 1 M s ⋅ 2 +k

= F s( )

A 1

s i k M

A 2

s i k M

  • terms of F(s) θ := 0 D := 1 Invert using Table 2-3.1: (^) Y t( ) D sin k M

 t s⋅ +θ

:= ⋅ + terms of f(t)

The mobile will oscillate forever with a period of (^) T 2 π M k

:= ⋅ T =1.043 s

Smith & Corripio, 3rd edition

Problem 2-9. Second-Order Response: Bird Mobile

  • Mg

f ( t )

y ( t )

-ky ( t )

y = 0

Problem data: (^) M := 50gm y 0 :=− 27 cm

Solution:

Force balance:

M d v t⋅ ( ) dt

= −M ⋅ g− k y t⋅ ( )+f t( )

Velocity: d y t⋅ ( ) dt

= v t( )

Initial steady state: (^0) = −M ⋅g −k y⋅ 0

Subtract and substitute:

M d^

(^2) ⋅Y t( )

dt^2

= −k ⋅Y t ( )+f t( )

Y 0( ) = 0