Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Anatomía y Fisiología Renal: Un Resumen Completo para Estudiantes de Medicina, Resúmenes de Nefrología

Este resumen tiene conocimientos sobre la anatomía y fisiología renal, Descripción ultraestructural del riñón entre otra

Tipo: Resúmenes

2017/2018

Subido el 06/10/2023

john-officiel
john-officiel 🇩🇴

1 documento

1 / 9

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Nefrología Básica 2
1
1
Capítulo
Nefrología Básica 2
ANATOMÍA Y FISIOLOGÍA RENAL
Nefrología Básica 2
pf3
pf4
pf5
pf8
pf9

Vista previa parcial del texto

¡Descarga Anatomía y Fisiología Renal: Un Resumen Completo para Estudiantes de Medicina y más Resúmenes en PDF de Nefrología solo en Docsity!

Capítulo

Nefrología Básica 2

ANATOMÍA Y FISIOLOGÍA RENAL

Nefrología Básica 2

1

Capítulo

ANATOMIA Y FISIOLOGIA RENAL

1

Capítulo

ANATOMIA Y FISIOLOGIA RENAL

quien desemboca en la vejiga, alcanzando finalmente la orina el exterior a través de la uretra.

La unidad funcional del riñón es la nefrona de las cua- les hay aproximadamente un millón por cada riñón. Esta estructura se encuentra constituida por el glomé- rulo, túbulo contorneado proximal, rama descendente delgada, rama ascendente delgada, rama ascendente gruesa, túbulo contorneado distal, túbulo conector y tú- bulo colector (cortical y medular). Cada túbulo colector recibe las terminales de seis túbulos conectores, y cada segmento nefronal esta constituido por células con fun- ciones de transporte especificas.

La corteza esta constituida principalmente por glomé- rulos, túbulos contorneados proximal y distal, mientras que las asas de Henle y túbulos colectores corticales ocupan principalmente la región medular. Las nefronas superficiales contienen cortas asas de Henle, mientras que las yuxtamedulares se caracterizan por gloméru- los en la región de la corteza adyacente a la medula, y contiene asas de Henle largas que se extienden profun- damente en la medula, participando activamente en la concentración de la orina.

El aparato yuxtaglomerular es una región especial de la nefrona constituido por la arteriola aferente, arterio- la eferente, y la rama ascendente del asa de Henle en su porción distal. En este ultimo segmento tubular se presenta un grupo de células epiteliales hiperplásicas que constituyen la macula densa, con importantes pro- piedades en la detección del contenido de sodio en la luz tubular. También tenemos en la pared de la arteriola aferente células musculares especializadas llamadas yuxtaglomerulares o granulosas, que contienen renina siendo el único sitio demostrado hasta la fecha de sín- tesis de Renina. Esta región se encuentra densamente inervada por terminales nerviosas simpáticas.

Descripción ultraestructural del riñón

A nivel ultraestructural el glomérulo esta constituido por la cápsula de Bowman, espacio de Bowman donde se deposita el filtrado glomerular, asas capilares con endotelio fenestrado, rodeadas por la membrana ba- sal glomerular, células epiteliales viscerales conocidas también con el nombre de podocito que abrazan los ca- pilares glomerulares, y células epiteliales parietales ad- heridas a la cápsula de Bowman. En la parte central del glomérulo se observa el mesangio con la matriz mesan- gial y células mesangiales de gran tamaño, las cuales tienen actividad fagocitica y previenen la acumulación glomerular de macromoléculas anormalmente filtradas. También tienen actividad contráctil, con lo que pueden modificar la superficie de filtración glomerular.

La barrera de filtración glomerular esta compuesta por el endotelio fenestrado, membrana basal glomerular y célula epitelial visceral (o podocito) con pies que abra- zan el asa capilar, entre pie y pie de podocito se encuen- tra el diafragma hendido. Esta ultima estructura solo ha cobrado importancia recientemente al identificar en niños con síndrome de nefrótico congénito (tipo Finlan- dés) deficiencia de nefrina en esta área. Cada uno de los elementos de la barrera de filtración glomerular puede limitar el paso de diversas moléculas. El endotelio tiene fenestraciones de 700 Å, por lo cual solo limita el paso de partículas de gran tamaño, como glóbulos rojos leu- cocitos y plaquetas. La membrana basal tiene un me- jor efecto como barrera, el diámetro de los poros de la membrana basal glomerular es de 40-45 Å, por lo tanto moléculas con radio menor a 40 Å son libremente filtra- das, aquí podemos incluir todas las proteínas de bajo peso molecular como la beta2 microglobulina y las hor- monas. Entre las proteínas de tamaño intermedio cuyo radio es de 30 a 50 Å solo algunas de ellas podrían atravesar la barrera de filtración, a manera de ejemplo la albúmina con 36 Å, de ahí que teóricamente toda la albúmina debería de aparecer en la orina en valores significativos, en la practica solo una pequeña cantidad aparece en la orina (normoalbuminuria), porque por su carga negativa es repelida por proteínas también de car- ga negativa en la membrana basal glomerular (MBG), representadas principalmente por proteoglicanos: he- paran sulfato, perlecan y agrin. Otros componentes de la MBG son laminina, fibronectina, nidógeno, colágeno

1

Capítulo

ANATOMIA Y FISIOLOGIA RENA:

tipo IV, V y VI. Proteínas de alto tamaño molecular con un radio mayor a 50 Å como las macroglobulinas e in- munoglobulinas no atraviesan la barrera de filtración.

El diafragma hendido contiene poros con dimensiones de 40 x 140 Å, contiene varias proteínas también de car- ga negativa que contribuyen a repeler las plasmáticas. Entre sus principales componentes se ha identificado la nefrina, podocina, D actinina 4 y CD2-AP, componen- tes importantes para la función de barrera del podocito como ha sido demostrado en podocitopatías (hialinosis focal segmental).

El intersticio esta constituido principalmente por fibro- blastos y células dendríticas del sistema inmune. En el espacio entre células se encuentra matriz extracelular con proteoglicanos, glicoproteínas, fibrillas y fluido intersticial. Un subgrupo de fibroblastos intersticiales denominados 5´-NT-positivos es el grupo celular encar- gado de la síntesis de Eritropoyetina.

Flujo sanguíneo renal y filtración glomerular

El riñón constituye el 0.5% de la masa corporal pero cerca del 25% del gasto cardiaco perfunde los riñones, de ahí que para un gasto cardiaco de 5 litros el flujo sanguíneo es de 1,5 litros/minuto, equivalente a un flujo sanguíneo renal de 600 ml/minuto. La tasa de filtra- ción glomerular normalmente esta cercana a 125 ml/ minuto, o 180 Litros por 24 horas, pero varia en con- diciones normales con el sexo y edad. Puesto que solo una fracción del flujo plasmático es filtrable ello se co- noce como fracción de filtración, y su valor es del 20% (125 x 100/600). El flujo sanguíneo renal y la TFG se mantienen normalmente en un rango muy estrecho gra- cias al fenómeno de autoregulacion, de tal manera que cambios severos en la presión arterial sistémica pueden no modificarlos significativamente. Modificaciones en el tono de las arteriolas aferentes o eferentes son factores reguladores de las presiones en el penacho glomerular. En la generación del filtrado glomerular intervienen las fuerzas de Starling: presión hidrostática y oncotica en el capilar glomerular, presión hidrostática y oncotica en la cápsula de Bowman, fuerzas que favorecen la filtra- ción son la presión hidrostática en el capilar glomerular y la presión oncotica en la cápsula de Bowman, fuerzas que se oponen al filtrado glomerular son la presión on- cotica en el capilar glomerular y la presión hidrostática en la cápsula de Bowman. La presión neta de filtración glomerular normal es igual a 21 mm de mercurio (Hg). La vasoconstricción de la arteriola aferente da lugar a disminución de la presión hidrostática en el capilar glo- merular, mientras que vasoconstricción de la arterio- la eferente la aumenta generando mayor filtración glo- merular. Vasoconstricción de ambas arteriolas puede ocurrir en severas hipovolemias, reduciendo muy sig- nificativamente la presión hidrostática del capilar glo- merular y llevando a oliguria y anuria.

La vasodilatación de la arteriola aferente mediada por la prostaglandina I2 aumenta la filtración glomerular, y constituye un mecanismo importante compensador en estados hipovolémicos o hipotensivos, lo que nos lleva a

recomendar evitar los AINES en estas situaciones. La angiotensina II también participa activamente en los escenarios anteriores generando vasoconstricción de la arteriola eferente sosteniendo el filtrado glomerular, de tal manera que el uso de IECAS o ARA II puede afectar severamente la filtración glomerular en situaciones de stress, generándose falla renal aguda mediada hemodi- námicamente.

En la autorregulación del flujo sanguíneo renal (FSR) y tasa de filtración glomerular (TFG) intervienen dos me- canismos que finalmente actúan modificando el tono de la arteriola aferente: el mecanismo miogénico y la re- troalimentación (feedback) túbuloglomerular; un tercer mecanismo también importante es el balance glomérulo tubular. El mecanismo miogénico se basa en propieda- des intrínsecas de la musculatura lisa vascular, en for- ma tal que al aumentar la presión en las paredes de la arteriola aferente en forma refleja se genera contracción de las fibras musculares impidiéndose la modificación en el FSR. El segundo mecanismo es la retroalimenta- ción (feedback) túbuloglomerular el cual se activa cuan- do se presenta alto filtrado glomerular, lo que genera excesivo aporte de cloruro de sodio a los segmentos distales, principalmente la macula densa, con aumento en sus concentraciones intracelulares, estimulándose la generación de Adenosina a partir del ATP y vasocons- tricción de la arteriola aferente con disminución del fil- trado glomerular. Por el contrario cuando el aporte de cloruro de sodio a la macula densa disminuye se atenúa la retroalimentación (feedback) túbuloglomerular y se libera oxido nítrico y prostaglandina E 2 potentes vaso- dilatadores de la arteriola aferente y restauradores de la TFG.

El balance glomérulo tubular es otro mecanismo que permite controlar el exceso de filtrado glomerular en presencia de incremento en el tono de la arteriola efe- rente. A medida que se genera filtración glomerular a lo largo de los capilares glomerulares se incrementa dis- talmente la presión oncotica, y ello da lugar en las vasas rectas peritubulares a estimulación en la reabsorción sodio y de agua.

Mecanismos renales para la regulación del

equilibrio hidroelectrolítico y ácido-base renal:

La formación de orina implica tres procesos básicos: fil- tración glomerular, reabsorción y secreción. Estos proce- sos le permiten a los riñones eliminar solutos indeseables producto del metabolismo celular u obtenidos en la dieta, y regular el equilibrio hidroelectrolítico de acuerdo con las condiciones medioambientales en las que se encuentre el individuo. Pero puesto que el filtrado glomerular es abun- dante, el riñón debe de contar con mecanismos tubulares que le permitan modular el volumen y composición de la orina en forma satisfactoria.

Mecanismos por los cuales se reabsorbe elementos a nivel de la nefrona son la difusión simple, facilitada, transporte activo primario, secundario y endocitosis. La reabsorción puede ser paracelular (entre células) o transcelular (a través de células) y ocurre gracias a una

1

Capítulo

ANATOMIA Y FISIOLOGIA RENA:

gracias al lumen positivo generado por la reabsorción de cloro, de ahí que los diuréticos de asa al inhibir la reabsorción de iones a este nivel reducen la absorción de calcio; la PTH aumenta la absorción de calcio a este nivel, y el receptor sensible al calcio en presencia de hi- percalcemia la inhibe. En el túbulo contorneado distal se reabsorbe el 8-9% del calcio, por ruta transcelular, y gracias a canales selectivos de calcio en la membrana luminal y bomba calcio ATP asa y proteína contratrans- portadora Na-Ca en la membrana basolateral. La para- tohormona también estimula la reabsorción de calcio a este nivel, al regular la apertura de los canales sensi- bles al calcio. La hipercalcemia inhibe su absorción al actuar sobre el receptor sensible al calcio en la mem- brana basolateral. La tiazidas a este nivel promueven la reabsorción de calcio, al igual que el calcitriol (vitamina D activa) y la calcitonina, aunque esta ultima hormona también puede ejercer ese efecto en el asa de Henle. Las tiazidas inhiben la proteína cotransportadora Na-Cl en la membrana luminal de la célula tubular, lo cual da lu- gar a disminución del contenido de Na intracelular, es- timulándose la proteína contratransportadora Ca-Na en la membrana basolateral con disminución del Ca intra- celular, factor que estimularía su reabsorción tubular.

En el metabolismo del fósforo los riñones son importan- tes, puesto que de 1400 miligramos que se ingieren en la dieta 900 miligramos de absorben, 500 miligramos se eliminan en las heces y 900 miligramos son eliminados finalmente vía renal. La absorción intestinal de fosfatos es estimulada principalmente por el calcitriol y ocurre en un cotransporte con el Na gracias a la proteína NaPi- IIb, la cual puede ser inhibida por el ácido nicotínico. El fósforo contribuye en la luz tubular en la eliminación de hidrogeniones, siendo el componente mas importan- te de la acidez titulable, mecanismo que representa 1/ parte de la excreción neta de ácidos no volátiles del organismo. Del fosfato filtrado 80% es reabsorbido en el túbulo contorneado proximal y solo 10% en el túbulo contorneado distal, en forma tal que 10% de la carga de fosfato filtrado es normalmente eliminado. En el tú- bulo contorneado proximal el fósforo se reabsorbe en cotransporte con el sodio y por 3 proteinas: la NaPi-IIa, NaPi-IIc y NaPTI. La reabsorción de fosfatos es estimu- lada por la Vitamina D, depleción de fosfatos, hormona del crecimiento (lo que explica los niveles mas altos de fosfatos en niños en crecimiento que en los adultos), y hormonas tiroideas. Factores que disminuyen la reab- sorción de fosfatos son la paratohormona (disminuye las proteínas transportadores de fosfato en el túbulo contorneado proximal), dietas altas en fosfatos, fosfa- toninas (factores de crecimiento fibroblásticos (FGF)), glucocorticoides, tacrolimus, péptido natriurético au- ricular, dopamina, acidosis metabólica, inhibidores de anhidrasa carbónica y estrógenos.

El riñón también participa en el equilibrio ácido base, y lo hace de varias formas:

  1. Reabsorbe el bicarbonato filtrado en el túbulo con- torneado proximal, proceso en el cual es de vital importancia la anhidrasa carbónica en la luz tubu- lar, favoreciendo la conversión del bicarbonato fil- trado a ácido carbónico al combinarse con los hi- drogeniones secretados. 2. Regenera el bicarbonato titulado tanto en túbulo contorneado proximal como distal, 3. Sintetiza amonio a partir de la glutamina, el cual luego es secretado en el túbulo contorneado proxi- mal, participando activamente en la eliminación de hidrogeniones secretados distalmente. 4. Secreta activamente hidrogeniones por la H+ Atp- asa, acción llevada a cabo por las células intercala- das tipo A en los túbulos colectores.

En relación a la participación del riñón en el equilibrio hídrico podemos decir que es el principal órgano que regula el balance de agua. En condiciones normales de los 180 litros de filtrado glomerular generados 177- son reabsorbidos. La reabsorción de agua a lo largo de la nefrona sigue a la reabsorción de solutos. 67% del agua filtrada se reabsorbe en el túbulo contorneado proximal por osmosis, siendo el generador del gradiente osmótico la reabsorción de sodio acoplada a otros solutos a este nivel. En el asa de Henle se reabsorbe el 15% del agua filtrada, exclusivamente en el segmento delgado descendente a tra- vés de canales de agua (acuaporina 1), la rama ascendente es impermeable al agua. En el túbulo contorneado distal se reabsorbe aproximadamente 8 a 17% del agua filtrada. Los túbulos colectores reabsorben agua por los canales de agua (acuaporina 2) en las células principales esencial- mente en presencia de hormona antidiurética (ADH) o Va- sopresina. Esta ultima hormona es quien determina que se produzca una orina concentrada (1200 mosmol/Lt) o diluida (50 mosmol/lt) dependiendo de la ingesta de líqui- dos del individuo o de las condiciones medioambientales en que se encuentra. Se produce en el hipotálamo en los núcleos supraoptico y paraventricular, y es almacenada en forma de gránulos en la neurohipófisis o hipófisis pos- terior. Su secreción esta influenciada por varios factores: osmóticos y no-osmóticos, cuya función es mantener la osmolaridad plasmática en rangos estrechos (285 +/- 5 mosm/Lt). Entre los factores osmóticos se cuenta con re- ceptores osmolares (osmorreceptores) localizados en el hipotálamo, constituidos por un grupo de células espe- cializadas, quienes responden a las concentraciones ex- tracelulares de osmoles efectivos. El segundo grupo los factores no-osmóticos corresponden a receptores de vo- lumen y presión (presorreceptores) sensibles a cambios en la distensión de las estructuras en que se encuentran. Los de baja presión localizados en la aurícula derecha y grandes vasos pulmonares responden a modificaciones de volumen, mientras que los de alta presión ubicados en el arco aórtico y seno carotideo lo hacen a cambios en la pre- sión arterial sistémica. Los estímulos captados por estos receptores son posteriormente enviados al hipotálamo a través de rutas nerviosas lográndose afectar la secreción de ADH de acuerdo con los requerimientos del individuo. Se han detectado varios receptores a la hormona anti- diurética: V1a en las células musculares lisas en las que generan contracción, V1b en la pituitaria anterior donde modula la liberación de ACTH (adenocorticotropin), y V en la membrana basolateral de las células principales tu- bulares renales.

La ADH a nivel renal favorece la síntesis, inserción y fusión de vesículas ricas en acuaporina 2 (AQP-2) o ca- nales de agua en la membrana luminal de las células

1

Capítulo

ANATOMIA Y FISIOLOGIA RENAL

principales, permitiendo la entrada de agua a la célula por gradiente osmótico. Recientemente se han sinteti- zado diuréticos antagonistas del receptor de hormona antidiurética (o Vasopresina) conocidos como Acuare- ticos, los mas conocidos son el tolvaptan y conivaptan.

Pero el proceso de concentrar o diluir la orina no depen- de solo de la ADH, puesto que es necesario un gradien- te osmótico que estimule el movimiento de agua, y ese gradiente es aportado por un intersticio hipertónico. El mecanismo por el cual el intersticio llega a ese estado es el de multiplicación contracorriente, nombre muy ade- cuado, puesto que multiplica el valor de la osmolaridad del intersticio de un valor inicial igual a la del plasma a un valor final de 1200 miliosmoles/L. El termino con- tracorriente deriva de que el área anatómica donde se genera la multiplicaron de la osmolaridad del intersticio es el asa de Henle, por la que el flujo del filtrado glo- merular trascurre en sentidos opuestos inicialmente en la rama descendente y posteriormente en la rama ascen- dente delgada. La presencia de una proteína transpor- tadora de solutos de la luz tubular hacia el intersticio en la rama ascendente del asa de Henle, asociada a la impermeabilidad al agua de ese mismo sector son los que permiten multiplicar la osmolaridad del intersticio, siendo importante también la distribución en asa de los vasos sanguíneos, para evitar que se disipe el gradiente osmótico medular.

Funciones endocrinas renales

Se encuentran representadas principalmente en 3 hor- monas: Renina, Vitamina D activa y Eritropoyetina. El sistema renina angiotensina aldosterona se inicia en el riñón por la síntesis de renina por la células yuxtaglo- merulares o granulosas, las cuales están en estrecho contacto con la macula densa, células epiteliales espe- cializadas del túbulo contorneado distal que censan el contenido el cloruro de sodio en la luz tubular del asa de Henle. Al disminuir el aporte de cloruro de sodio a los segmentos distales, estas células le informan a las cé- lulas yuxtaglomerulares que probablemente la presión arterial sistémica o el volumen intravascular se encuen- tra bajos con disminución en el flujo sanguíneo renal y TFG liberándose renina hacia la luz de las arteriolas aferentes, alcanzando posteriormente la circulación sis- témica, y actuando sobre el sustrato de renina (angio-

tensinógeno) lo convierte en angiotensina 1, el cual por acción de la enzima convertidora de angiotensina (ECA) da lugar a la angiotensina 2 que posee potente acción vasoconstrictora directa, estimula en el túbulo contor- neado proximal la reabsorción de sodio y cloro y libera aldosterona la cual genera retención de sodio y agua en el túbulo colector, restaurándose de esta manera la vole- mia, presión arterial sistémica y flujo sanguíneo renal.

El riñón también participa en la síntesis de vitamina D activa la cual tiene varias acciones: estimular la absorción intestinal y reabsorción renal de calcio y fósforo, inhibir la secreción de la parathormona y favorecer la madura- ción de los osteoclastos al estimular la síntesis del ligan- do del receptor activador del factor nuclear KB (RANKL). La síntesis de vitamina D se origina principalmente en la piel al exponerse el 7-dehidrocolesterol a la luz ultraviole- ta dando lugar a la vitamina D3 (colecalciferol), mientras que el consumo de pescado y alimentos derivados de las plantas aporta vitamina D2 (ergocalciferol), al igual que formas farmacéuticas que lo obtienen de las levaduras. La vitamina D2 se diferencia de la vitamina D3 en la presen- cia de un grupo metilo y un doble puente entre 2 carbo- nos, es además menos potente, pero puede ejercer efectos semejantes a la vitamina D3. Ninguna de las dos formas anteriores de la vitamina D es activa, y requieren experi- mentar primero una hidroxilación hepática en posición 25 (25 hidroxivitamina D2 (ercalciferol), 25 hidroxivitamina D3 (calcidiol)) , y luego una renal en posición 1 por la enzi- ma 1 alfa hidroxilasa en las células del túbulo contornea- do proximal para dar lugar a la vitamina D activa (1, (OH)2D ) o calcitriol.

Otra hormona que produce el riñón es la eritropoyeti- na, importante en el proceso de maduración del glóbulo rojo. La eritropoyetina en vida fetal se produce princi- palmente en el hígado pero en el adulto prácticamente solo esta en los riñones, y se sintetiza en los fibroblastos intersticiales de la corteza vecinos a las células del epi- telio tubular y de los capilares peritubulares. La eritro- poyetina se fija al receptor EPO de las células progeni- toras eritroides BFU-e y CFU-e impidiendo que activen su apoptosis, estimulando su posterior maduración a glóbulos rojos.