
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The hemopoietic system, the source of mammalian immune cells, which originate from bone marrow stem cells. In vivo and in vitro cloning, growth factors, transcription factors, and the development of different cell types. Recent discoveries on converting one differentiated cell type into another have therapeutic implications, such as curing genetic immunodeficiencies. The document also mentions the division and expansion of lymphocytes in response to antigen, leading to immunological memory.
Typology: Slides
1 / 1
This page cannot be seen from the preview
Don't miss anything!
The Hemopoietic System
The great majority of cells involved in mammalian immunity are derived from precursors in the bone marrow (left half of figure 1) and circulate in the blood, entering and sometimes leaving the tissues when required. A very rare stem cell persists in the adult bone marrow (at a frequency of about 1 in 100 000 cells), and retains the ability to differentiate into all types of blood cell. Hemopoiesis has been studied either by injecting small numbers of genetically marked marrow cells into recipient mice and observing the progeny they give rise to (in vivo cloning) or by culturing the bone marrow precursors in the presence of appropriate growth factors (in vitro cloning). Proliferation and differentiation of all these cells is under the control of soluble or membrane bound growth factors produced by the bone marrow stroma and by each other.
Within the cell these signals switch on specific transcription factors, DNA-binding molecules which act as master switches that determine the subsequent genetic programme, in turn giving rise to development of the different cell types (known as lineages). Remarkably, recent studies have shown that it is possible to turn one differentiated cell type into another by experimentally introducing the right transcription factors into the cell. This finding has important therapeutic implications, e.g. in curing genetic immunodeficiencies. Most hemopoietic cells stop dividing once they are fully differentiated. However, lymphocytes divide rapidly and expand following exposure to antigen. The increased number of lymphocytes specific for an antigen forms the basis for immunological memory.