Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Statistical Parameter Estimation - Advanced Hydrology - Lecture Slides, Slides of Aeronautical Engineering

These are the Lecture Slides of Advanced Hydrology which includes Method of Matching Points, Method of Moments, Maximum Likelihood Method, Population Parameter, Sample Parameter, Estimation etc.Key important points are: Statistical Parameter Estimation, Method of Matching Points, Method of Moments, Maximum Likelihood Method, Population Parameter, Sample Parameter, Estimation

Typology: Slides

2012/2013

Uploaded on 03/28/2013

ekanath
ekanath 🇮🇳

3.8

(4)

80 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Lecture 7: Statistical parameter estimation
Module 7
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Statistical Parameter Estimation - Advanced Hydrology - Lecture Slides and more Slides Aeronautical Engineering in PDF only on Docsity!

Lecture 7: Statistical parameter estimation

Module 7

Docsity.com

Parameter Estimation

Methods of Parameter Estimation

  1. Method of Matching Points

  2. Method of Moments

  3. Maximum Likelihood method

θ

θ

θ

θ θ

Population Parameter

Sample Parameter

Unbiased estimation of parameter:An estimate of a parameter

is said to be unbiased estimate, if E( )

i

i

i

i i

Docsity.com

2) Method of Moments

θ θ θ θ i j i j

1 2 n

Given a function f( ,......., ,x) and values ,.......,

we need to find x ,x ,..........x

Generate number of equations by taking moments of the distribution

Take, any distribution, like f(x

θ

θ

θ α α

− −

2

1

2

2

( x )

1 2 2 2

2

) (2 ) e - < x < +

Take the 1st moment Mean about the origin

θ α

θ

α

θ α

θ

α

μ θ

θ

− −

− −

= ∏

∫ ∫

2 1 2 2 2 1 2 2 ( )

1 2 2 2

2

( )

1 2 2 2

2

( ) (2 )

(2 )

x

x

x fx dx x e dx

xe dx

E(X) = =

=

Docsity.com

2) Method of Moments Contd...

α

α

2

2

2 1 2

2

y

E(X) = y e dx

1

2

2 1

2

substituting, y = ( )

x =

dx =

x

y

dy

α α

α α

α

α

− −

− −

∫ ∫

2 2

2

2 2

2 1

2

1

y y

y

e ydy e dy

e dy

E(X) =

E(X) = +

1

1

1

E x ( )

[As odd multiplier, h(-y) = -h(y)

Docsity.com

3) Maximum Likelihood method

1 1

1 2 3

We have the following, ( ; ) ( ; ) ( ; )

i i

Sample

x

f x f x f x

x

1 3

Product of ( ; ) ( ; ) is "likelihood " L

If L( ; ) ( ; ), then is the estimate preferred,

which maxmizes the likelihood function.

θ θ

θ θ θ

× × ≈



i i

f x f x

x f x

( ; θ ) → evaluated at x = x i i

f x pdf

Docsity.com

3) Maximum Likelihood method Contd…

{ }

1 2

1 2 ) 1

1 2

1 2 3

(

( ) ; 0 is a parameter

, , , Sample available;

L = ( , ) ( , ) ( , ) ( , )

= = (formulation of like

n

n

i

n i

x

n

n

x x x

x

n x^ x^ x n

f x e x

x x x

f x f x f x f x

e e e

e e

β

β β β

β

β

β β

β β β β

β β β

β β

=

− − −

− + + +

∴ × × × ×
× × ×



lihood function)

Because ln(L) is an increasing function of L, it reaches maximum value

ln( )

at the same pt., as ln(L) does, 0

(When there is no other method feasible, this method is best one)

θ

L

Docsity.com

3) Maximum Likelihood method Contd…

=

 ^  

2

2

1 2

2

2

( ) exp

[Take, as parameter not S.D. and also]

L = ( , , ) ( , , ) ( , , ) = exp

ln( ) ln(2 )

i

n (^) n

i

i

x

f x

x

f x f x f x

n x

or L

=

1

2

1

ln( ) ln( )

0 set & ,Now

ln( )

n

n

i

i

i

L L

or

L x

X

1

n

i

i

x

or x

n

μ

=

Docsity.com

3) Maximum Likelihood method Contd…

2

2

1 2

2

2

1 1 ( ) exp

2 2

1 1 ( , , ) ( , , ) ( , , ) exp

2

2

1 ln( ) ln(2 )

2 2

μ

σ σ

σ μ

μ

μ σ μ σ μ σ

σ

σ

μ

σ

σ

   −  − =    

∏      

 

   −    − ∴ (^)      

 ^   ∏      

 −  − = − ∏ −  

 

[Take, as parameter not S.D. and also]

L =   =

i

n (^) n

i

x

f x

x

f x f x f x

n x

or L

1

2

1

ln( ) ln( )

0

ln( )

0

( ) 0

μ σ

μ σ

μ

μ σ

μ

=

=

∂ ∂

= =

∂ ∂

∂  − 

= =  

∂  

∴ − =

set & ,Now

n i n i i i

L L

or

L x

X

Docsity.com

 In hydrology, most of the phenomena are random in nature.

E.g. rainfall-runoff model

 Random variables involved in a hydrological process may be dependent or

independent.

 The ‘random variables’ X & Y are ‘stochastically independent’ if and only if

their ‘joint density’ is equal to the product of ‘marginal density functions’.

 Joint density function : Simultaneous occurrence

 Marginal density function : Distribution of one variable irrespective of the value

of the other variables

 Conditioned distribution: Distribution of one variable conditioned on the other

variable.

Highlights in the Module

Docsity.com

 Measures of Central Tendency:

Mean

 Arithmetic average (for sample)

Mode

Median

 Measures of Spread or Dispersion:

Range [(xmax-xmin)]

Relative Range [=(range/mean)]

Variance

Highlights in the Module Contd…

Standard deviation,

Coefficient of variation

Docsity.com

 Methods of statistical parameter estimation

  1. Method of Matching Points

  2. Method of Moments

  3. Maximum Likelihood method

Highlights in the Module Contd…

Docsity.com