






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A concise overview of the aci/nscp code requirements for axially loaded reinforced concrete (rc) columns. It covers essential design considerations, including minimum longitudinal reinforcement ratios, clear distance between bars, concrete cover, and the calculation of axial load strength for both tied and spiral columns. The document also includes example problems demonstrating the application of these code provisions in practical design scenarios, such as determining the required steel reinforcement and spacing for lateral ties or spirals in short columns under axial loads. This information is crucial for civil engineering students and professionals involved in structural design, offering a clear and structured approach to understanding and applying relevant code specifications for column design.
Typology: Study notes
1 / 12
This page cannot be seen from the preview
Don't miss anything!
ACI (^) /NSCP (^) Code (^) Requremems )For (^) moin (^) lorgittia (^) Reinorcig ars
min. n0. OF ES six (^) (o) For (^) circular (^) arangentert FOUr (4) (^) For (^) rectglar (^) ariargemt three (^) (3) For (^) triangular (^) arrBrgement (c) min. (^) clear (^) distance betueen (^) jogitinal bars
For lateral Ties
L40 mm
(b) maximum size
(c) (^) maximum spaing oF (^) barr (^) (eTC)
(a) Tied Column
JDmm
Ieast column dimension
Pu 0.80 p o8sft (Ag-As) +Asf
Pu 0.52 o-esf (Ag AS) + Asfy
Pu 85 o85f (Ag-As) *Agy |
Pu 0-w375 0.85f (Ag-As)+AfYJ
1- 4.5 % Cco nomical
steel
raho
honer tnan beaM S bar oF Cegiegation (honeycom)
min (^) 2Gnn (^) fdagg t (^) sp
(e) min spoBùng (theo. compar ) s) 4ASPDe - psp)
AS Ag
2 De fsmin ’ Area oF Suel Gros Area oF Column gross stcel raio
AC Area oF Core
,0.C
De = Core Diameter
Asp Cross- sectional Arca of spral ar
PROBLEM 1. Design the Q P 9o KN. Ute fC
pg Ag
AS
445
445
syuare hcd colum to camYy seryicC axial load
leat dim.
Pudes 2D +-6L
:. S 400 mm
2000 xI Ag
Pudes : 2000 KN
Pu
s Ag sAg
0-80 o-85t^ (Ag-^ As)^ +^ Afy^ 0-b 6-80(0-b5)0-8s (21)(A9 - 0-02A9) + (0-02A9) (414)|
0.02 (445)(445) Ac =3900.5^ mm^2
3900-
n25 8.
use |2 -25mm p
S 440. 450mm Say 445 mm
4
okay!
445- 2(4o)- 2(1o)
Sc 8).0Mm
40
Detas
+(25)
4 45
445
Lyuse
C-
Po lotN 25mm d ma
445 x445 mm |2-25mn man Bar
194,00|. 4744 mm 2 A
Mp ML
ML
P ME PE
"Eceyicitby, e
MOF-A
rension cotiecl Compresion contraled
mF-A
MO F-
grids A 1
Pudes >(>F-A t Pp4) 102d combination
M =Pe
Bendne amen t
DF-A (^) pop-t
cno0sSe tne max or greatest bton Fame A Reme 1 (bigget value)
N.A.
Balanced Condition (fs *f9) Compression Controls
PIastic Centroid
Bi 0.
4- 28mnd
4- 28mm
350
(rectangular, regular shape)
T- Ce -Cs t Pn
Pn
AS -
yF# >0^ (@^ FOrce^ Diagram)
Pa epal
(ExIo) tbal +
G00(drc)
e< eal
a
bal 452.^448 mm
e
Asfy - 0-95feab^ -^ Asfy^ +^ Pn^ o
C 313.ol mm cl
(@ Force magiam)
530- 7O
eb•l
2a. So8mm A
0 85{
)- cs (d-d') - ce (a-)
Pn
Ccor Ci
ASOT f9)
(@ center of a
As (ps orf9)
balanced eebal
aoo(c -d)
Goo(D-0)
AS : 24-03Ol mm 2 AS =
fy
Pn - Asfy -0-85ft qb +
Asfy
a(0-)
C = 302. 122 m c
Pn - z409.01( **) - o8s(o1) (0.85c) (30) +2443-0|I
Bc
Pn (tac t) -cs ( drd') - Co (d-)
(30 t
d530mn
B (530-)
E(530-)
fn (eaet
n o00mm
6co(
1477800 (530 rc)
) -(820-7o)^ - (Dc{^50 -^ )^ -o
+)-A[fy (d-d') - o.8sfiab (d-) o
(a) ecemcity^ along^ yraxis (0) eccenicity^ along^ yaxis
fc 20. MPa fy =^ 43.^70 MPa d =534.5 mm
b 3 5Oom
(o)
02.5 mn
O. o.
490
As Ag
AS
200 (
495
475
X
(1949- 25)(2)
SEES
(356) (900)
0-
(847.25)(2 ider) (3s0)(o)
200 mn
interpolYto
e44.2s
X -0-
0-90- 0.
3D (uco)
20- 3
X
Pn
o 48
35D(0)
X
plot g(let)^ (ngn)
X axjs
X-0. o-55- 0-4gksi
20-7 MPa 3 kui
Klu
Where
KLu 2 22
Por
Magni ied Moment i(Mo)
1
34 4 12
: radus^ oF^ gyration
" Case^ I.^ Frames Cm
rectargular ciraul ar
Pu 0.75 Per
Cm 0.b0^ 0.^ o
(Kiu)*
Mi
1.2D Mp Mu
pn to ixed
()
Pu ultmate Facorod Loat
K 1.
K 0.
r0.30h
efrecive value OF EI
k 05
klu
Single Curvatue m - (egative)
Me M2ns
Double cufvoure
(a) Ss
(o) Ss
(positive)
perpercicular to tre
2Pu Ao Vule
Pu
yPU 0 15 Pcr
Le CTcs
Ao 1t order
2Per = um o all ciical loac oF tne
4040
0.15Pcr
Cm
1
(Ku)e
(ET)erf
Po 1900 kN
2
0.40EcIg
Mu
(EJ)err
" )+-2(90 1-6(00)
Cm 1
pd
Pu 4D4 kN
theCalculate magnpiecdmonent
1.PROBLEMhe column ishna memeroFa Frame bracec gaint y.
theoreical,
JAC kroN MORE LAND