



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A midterm exam in mathematics with questions related to functions, limits, and asymptotes. The exam includes exercises on determining whether a relation is a function, evaluating limits, and finding vertical and horizontal asymptotes. The exam also includes an exercise on finding the values of x for which the derivative of a given function is zero. The document can be useful as study notes or exam preparation for a mathematics course covering these topics.
Typology: Exams
1 / 6
This page cannot be seen from the preview
Don't miss anything!
a. S = {(4,7), (5,8), (6,9), (7,10), (8,11)}
b. S = {(x,y) such that y=โ xโ ; x ฯต R}
c. y = x
2
d. โyโ = x
e. y =
2 x
x + 2
lim
xโ โ
x โ 2
2 x
2
โ x + 1
x โ 2
2 x
2
โ x + 1
x
x
2
x
x
x
2 x
2
x
2
x
x
2
x
2
x
x
x
2
x
x
x
2
x
โ
x
x
2
โ
2
x
5 + 2 x
2
2 โ x โ x
2
Vertical asymptote
2 โ x โ x
2
( 2 + x ) ( 1 โ x )= 0
2 + x = 0 1 โ x = 0
x =โ 2 โ x =โ 1
โ x
x = 1
x =โ 2 , 1
Horizontal asymptote
5 + 2 x
2
2 โ x โ x
2
x
2
x
2
dy =
2 dx + 6 dx
( 1 โ 2 x โ 2 dx )( 1 โ 2 x )
dy =
8 dx
( 1 โ 2 x โ 2 dx )( 1 โ 2 x )
Step 3:
dy =
8 dx
( 1 โ 2 x โ 2 dx )( 1 โ 2 x )
dx
dy
dx
( 1 โ 2 x โ 2 dx )( 1 โ 2 x )
Step 4:
lim
dx โ 0
( 1 โ 2 x โ 2 dx )( 1 โ 2 x )
lim
dx โ 0
( 1 โ 2 x โ 2 ( 0 ))( 1 โ 2 x )
lim
dx โ 0
( 1 โ 2 x )( 1 โ 2 x )
( 1 โ 2 x )
2
4 x + 3
and verify your answer using the
differentiation formula.
y =
4 x + 3
Step 1:
y + dy =
โ
4 ( x + dx )+ 3
y + dy =
4 x + 4 dx + 3
Step 2:
y + dy โ y =
4 x + 4 dx + 3 โ
4 x + 3
Step 3:
dy =
4 x + 4 dx + 3 โ
4 x + 3 โ
dx
dy
dx
4 x + 4 dx + 3 โ
4 x + 3
dx
dy
dx
dx
4 x + 4 dx + 3 +
4 x + 3
dy
dx
4 x + 4 dx + 3 โ( 4 x + 3 )
dy
dx
4 x + 4 dx + 3 โ 4 x โ 3
dx (
4 x + 4 dx + 3 +
4 x + 3 )
dy
dx
4 x + 4 dx + 3 โ 4 x โ 3
dy
dx
4 dx
dx (
4 x + 4 dx + 3 +
4 x + 3 )
dy
dx
4 x + 4 dx + 3 +
4 x + 3
Step 4:
lim
dx โ 0
4 x + 4 dx + 3 +
4 x + 3
lim
dx โ 0
โ
lim
dx โ 0
4 x + 3 +
4 x + 3
4 x + 3
4 x + 3
4 x + 3
4 x + 3
4 x + 3
4 x + 3
Check using the Derivative of a Radical
Note: d
dx
u =
du
dx
u
d
dx
d
dx
( 4 x + 3 )
4 x + 3