Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

math solutions and answers, Schemes and Mind Maps of Architecture

calculus book of feliciano uy solutions and answer

Typology: Schemes and Mind Maps

2021/2022
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 12/22/2022

nina-galeste
nina-galeste 🇵🇭

5

(2)

5 documents

1 / 114

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
EXERCISE 9.1
BASIC INTEGRATION FORMULAS
DIFFERENTIAL & INTEGRAL CALCULUS | Feliciano & Uy
1
1. 6𝑥24𝑥+ 5 𝑑𝑥
= 6𝑥3
34𝑥2
2+ 5𝑥+𝑐
= 𝟐𝒙𝟑 𝟐𝒙𝟐+𝟓𝒙+𝒄
3. 𝑥( 𝑥1)𝑑𝑥
= 𝑥 𝑥𝑥 𝑑𝑥
= 𝑥3
2𝑑𝑥 𝑥𝑑𝑥
= 𝟐
𝟓𝒙𝟓
𝟐 𝟏
𝟐𝒙𝟐+𝒄
5. 2𝑥2+4𝑥−3
𝑥2𝑑𝑥
= 2 + 4
𝑋 3
𝑋2 𝑑𝑥
= 2𝑑𝑥+ 4
𝑥𝑑𝑥 3
𝑥2𝑑𝑥
= 2𝑥+ 4 𝑑𝑥
𝑥 3𝑥1
1𝑑𝑥
= 𝟐𝒙+𝟒𝒍𝒏𝒙+ 𝟑
𝒙+𝒄
7. 𝑥38
𝑥−2𝑑𝑥
= Factor, (x-c), c = 2
P(c) = 0 the (x-c ) is the factor
P(c) = 0
2 1 0 0 -8
2 4 8
1 2 4 0
= (𝑋2+2𝑋+4)(𝑋−2)
(𝑋−2)
= (𝑥2+ 2𝑥+ 4)𝑑𝑥
= 𝑥3
3+ 2𝑥
2
2+ 4𝑥+𝑐
= 𝒙𝟑
𝟑+ 𝒙𝟐+𝟒𝒙+𝒄
9. 𝑥42𝑥3+𝑥2𝑑𝑥
= 𝑥2𝑑𝑥 2𝑥2
3𝑑𝑥+ 𝑥𝑑𝑥
= 𝒙𝟑
𝟑𝟔𝟓
𝟑
𝟓+𝒙𝟐
𝟐+𝑪
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

On special offer

Partial preview of the text

Download math solutions and answers and more Schemes and Mind Maps Architecture in PDF only on Docsity!

EXERCISE 9.1 BASIC INTEGRATION FORMULAS

1. 6 𝑥^2 − 4 𝑥 + 5 𝑑𝑥

= 6 𝑥^

3 3 −^

4 𝑥 2 2 + 5𝑥^ +^ 𝑐 = 𝟐𝒙𝟑^ − 𝟐𝒙𝟐^ + 𝟓𝒙 + 𝒄

3 (^2) 𝑑𝑥 − 𝑥𝑑𝑥

= 𝟐𝟓 𝒙

𝟓 𝟐 (^) − 𝟏𝟐 𝒙𝟐^ + 𝒄

5.^2 𝑥^

(^2) +4𝑥− 3 𝑥 2 𝑑𝑥

= 2 + (^4) 𝑋 − (^) 𝑋^32 𝑑𝑥

= 2 𝑑𝑥 + (^4) 𝑥 𝑑𝑥 − (^) 𝑥^3 2 𝑑𝑥

= 2 𝑥 + 4 𝑑𝑥𝑥 − 3 𝑥^

− 1 − 1 𝑑𝑥

= 𝟐𝒙 + 𝟒𝒍𝒏𝒙 + 𝟑𝒙 + 𝒄

7. 𝑥^

(^3) − 8 𝑥− 2 𝑑𝑥 = Factor, (x-c), c = 2 P(c) = 0 – the (x-c ) is the factor P(c) = 0 2 1 0 0 - 2 4 8 1 2 4 0

= (𝑋

(^2) +2𝑋+4)(𝑋−2) (𝑋−2)

= (𝑥^2 + 2𝑥 + 4)𝑑𝑥

= 𝑥^

3 3 +^

2 𝑥 2

2

  • 4𝑥 + 𝑐

𝟑 𝟑 +^ 𝒙

9. 𝑥^4 − 2 𝑥^3 + 𝑥^2 𝑑𝑥

= 𝑥^2 𝑑𝑥 − 2 𝑥

2 (^3) 𝑑𝑥 + 𝑥𝑑𝑥

𝟑 𝟑 −^

𝟔 𝟓𝟑 𝟓 +^

𝒙𝟐 𝟐 +^ 𝑪

EXERCISE 9.2 INTEGRATION BY SUBSTITUTION

Let u = 2 - 3x𝑑𝑢𝑑𝑥 = − 3

−𝑑𝑢 3

1 (^2) (− 𝑑𝑢 3 )

1 (^2) 𝑑𝑢

3 2 3 +^ 𝑐

𝟑 𝟐 𝟗 +^ 𝒄

3. 𝑥^2 (2𝑥^3 − 1)^4 𝑑𝑥

Let u = 2𝑥^3 − 1

𝑑𝑢 𝑑𝑥 = 6𝑥

2

= 𝑥^2 𝑑𝑥

= 𝑥^2 (2𝑥^3 − 1)^4 𝑑𝑥

= (𝑢^4 )(

𝑢^5

5 +^ 𝑐

5 30 +^ 𝑐

=

(𝟐𝒙𝟑^ − 𝟏)𝟓

Let u = 𝑥^2 + 3𝑥 + 4 𝑑𝑢𝑑𝑥 = 2𝑥 + 3

𝑑𝑢 = (2𝑥 + 3)𝑑𝑥

= 𝑑𝑢𝑢

= 𝑙𝑛𝑢 + 𝑐

= 𝐥𝐧 𝒙𝟐^ + 𝟑𝒙 + 𝟒 + 𝒄

7. 𝑥^

(^2) 𝑑𝑥 (𝑥 3 −1)^4

Let u = 𝑥^3 − 1 𝑑𝑢𝑑𝑥 = 3𝑥^2

𝑑𝑢 3

= 𝑥^2 𝑑𝑥

𝑑 𝑢 3 𝑥^4

= 13 𝑢−^4

= 13 𝑢

− 3 − 3 +^ 𝑐

= 𝑢

− 3 − 9 +^ 𝑐

= − (^) 𝟗(𝒙𝟑𝟏−𝟏)𝟑 + 𝒄

EXERCISE 9.2 INTEGRATION BY SUBSTITUTION

17. 𝑠𝑒𝑐^

(^2) 𝑥𝑑𝑥 𝑎+𝑏 𝑡𝑎𝑛𝑥 `

Let u = 𝑎 + 𝑏 𝑡𝑎𝑛𝑥

𝑑𝑢 𝑑𝑥 =^ 𝑏^

sin 𝑥 𝑐𝑜𝑠𝑥 ;^

𝑑𝑢 𝑏 =^ 𝑠𝑒𝑐

𝑑𝑢 𝑏 𝑢

= (^1) 𝑏^ 𝑑𝑢𝑢

= 𝟏𝒃 𝐥𝐧 𝒂 + 𝒃𝒕𝒂𝒏𝒙 + 𝒄

19. 𝑡𝑎𝑛 3 𝑥 𝑠𝑒𝑐^23 𝑥𝑑𝑥

Let u = 𝑡𝑎𝑛 3 𝑥

𝑑𝑢 𝑑𝑥 = 3𝑠𝑒𝑐

3 =^ 𝑠𝑒𝑐

1 (^2) (𝑑𝑢 3 )

= 13 [ 2 𝑢

(^32) 3 ] +^ 𝑐

= 13 2tan 3𝑥

(^32) 3 +^ 𝑐

𝟑 𝟐 𝟗 +^ 𝒄

21.^3 𝑥^

(^2) +14𝑥+ 𝑥+4 𝑑𝑥

= (^) 𝑔𝑓^ ((𝑥𝑥)) = 𝑄 𝑥 𝑑 𝑥 + 𝑅𝑔 𝑥𝑥 𝑑(𝑥)

  • using synthetic division

-4 3 14 13

-12 -

3 2 5 - R(x)

𝑄 𝑥 = 3𝑥 + 2 𝑥 + 4 = 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑔(𝑥)

= (3𝑥 + 2) 𝑑𝑥 + (^) 𝑥+4^5 𝑑𝑥

For the second integral :

𝑙𝑒𝑡 𝑢 = 𝑥 + 4 ;

= [^3 𝑥^

2 2 + 2𝑥^ + 5𝑙𝑛𝑢^ +^ 𝑐]

= 𝟑𝒙

𝟐 𝟐 +^ 𝟐𝒙^ +^ 𝟓𝐥𝐧^ (𝒙^ +^ 𝟒) +^ 𝒄

EXERCISE 9.2 INTEGRATION BY SUBSTITUTION

23. 𝑥^

(^5) − 2 𝑥 (^3) − 2 𝑥 𝑥 2 +1 𝑑𝑥 𝑥^3 − 3 𝑥 𝑥^2 + 1 𝑥^5 − 2 𝑥^3 − 2 𝑥 𝑥^5 + 𝑥^3 − 3 𝑥^3 − 2 𝑥 − 3 𝑥^3 − 3 𝑥 𝑥

𝑓(𝑥) 𝑔(𝑥)dx =^ 𝑄 𝑥 𝑑𝑥^ +^

𝑅(𝑥) 𝑔(𝑥) 𝑑𝑥

= 𝑥^3 − 3 𝑥 𝑑𝑥 + (^) 𝑥 2 𝑥+1 𝑑𝑥

=𝑥^

4 4 −^

3 𝑥 2 2 +^

𝑥 𝑥 2 +1 𝑑𝑥

For the 2nd^ term

Let u = x^2 +

𝑑𝑢 𝑑𝑥

=𝑥^

4 4 −^

3 𝑥 2 2 +

𝑑𝑢 2 𝑢

= 𝒙

𝟒 𝟒 −^

𝟑𝒙𝟐 𝟐 +^

𝟏 𝟐 𝐥𝐧 𝒙

EXERCISE 9. 3 INTEGRATION OF TRIGONOMETRIC FUNCTIONS

11. 𝑐𝑜𝑠 cos^6 2 𝑥𝑑𝑥 (^3) 𝑥

Let u = 3x ; 2u = 6x 𝑑𝑢 𝑑𝑥 = 3 ;^

𝑑𝑢 3 =^ 𝑑𝑥

= 𝑐𝑜𝑠 2 𝑢 𝑑𝑢 3 cos 2 𝑢

= (^23) 𝑐𝑜𝑠𝑢^1 𝑐𝑜𝑠𝑢𝑐𝑜𝑠𝑢 𝑑𝑢

= 23 𝑠𝑒𝑐𝑢𝑑𝑢

= 𝟐𝟑 𝐥𝐧 𝒔𝒆𝒄𝟑𝒙 + 𝒕𝒂𝒏𝟑𝒙 + 𝒄

13. 2 𝑠𝑖𝑛𝑥𝑐𝑜 𝑠𝑠𝑖𝑛^2 𝑥𝑑𝑥 2 𝑥

= (2^2 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥𝑑𝑥 )𝑐𝑜𝑠𝑥

= 𝑐𝑜𝑠𝑥^1 𝑑𝑥

15. 4 sin^

(^2) 𝑥𝑐𝑜 𝑠 (^2) 𝑥 𝑠𝑖𝑛 2 𝑥𝑐𝑜𝑠 2 𝑥 𝑑𝑥

= (4𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥 2 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥^ )( 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑥𝑐𝑜𝑠 2 𝑥 )𝑑𝑥

= 𝑠𝑖𝑛𝑐𝑜𝑠^2 2 𝑥𝑥 𝑑𝑥

Let u = 2x 𝑑𝑢 𝑑𝑥 = 2^

𝑑𝑢 2 =^ 𝑑𝑥 𝑠𝑖𝑛𝑢 𝑐𝑜𝑠𝑢.^

𝑑𝑢 2

= 12 𝑡𝑎𝑛𝑢𝑑𝑢

𝟐 𝐥𝐧 𝒄𝒐𝒔𝟐𝒙^ +^ 𝒄

Let u = 3x 𝑑𝑢 𝑑𝑥 = 3^

𝑑𝑢 3 =^ 𝑑𝑥

=

𝑑𝑢 3 𝑠𝑖𝑛𝑢𝑡𝑎𝑛𝑢

=^13 𝑐𝑠𝑐𝑢 + 𝑐

= − 𝟏𝟑 𝒄𝒔𝒄𝟑𝒙 + 𝒄

EXERCISE 9. 4 INTEGRATION OF EXPONENTIAL FUNCTIONS

= 𝑒−^2 𝑥^ dx

𝑙𝑒𝑡 𝑢 = 2𝑥 ;

𝑑𝑥 =^ −2 ;^ −

2 =^ 𝑑𝑥

= 𝑒𝑢^ (− 𝑑𝑢 2 )

= − 12 𝑒𝑢^ 𝑑𝑢

=− 12 𝑒𝑢^ + 𝑐

3. 𝑒𝑠𝑖𝑛^4 𝑥^ 𝑐𝑜𝑠 4 𝑥𝑑𝑥

= 𝑒𝑠𝑖𝑛𝑢^ 𝑐𝑜𝑠𝑢(𝑑𝑢 4 )

= 14 𝑒𝑠𝑖𝑛𝑢^ 𝑐𝑜𝑠𝑢𝑑𝑢

= cos 𝑢 ; 𝑑𝑣 = 𝑐𝑜𝑠𝑢𝑑𝑢

=^14 𝑒𝑣^ 𝑑𝑣

= 14 𝑒𝑣^ + 𝑐

𝒔𝒊𝒏𝟒𝒙 𝟒 +^ 𝒄

5. 𝑒^3 𝑥^ 𝑑𝑥 = 𝑒

3 𝑥 (^2) 𝑑𝑥

3 =^ 𝑑𝑥

= 𝑒𝑢^ (^2 𝑑𝑢 3 )

= 23 𝑒𝑢^ 𝑑𝑢

3 𝑥 (^2) + 𝑐

= 𝟐^ 𝒆

𝟑𝒙 𝟑 +^ 𝒄

7. 53 −^2 𝑥^ 𝑑𝑥

𝑑𝑥 =^ −2 ;^ −

2 =^ 𝑑𝑥

= 5 𝑢^ (− 𝑑𝑢 2 )

= − 12 5 𝑢^ 𝑑𝑢

3 − 2 𝑥 𝑙𝑛 5 +^ 𝑐

= − 𝟓

𝟑−𝟐𝒙 𝒍𝒏𝟐𝟓 +^ 𝒄

9. 3 𝑥^2 𝑥^ 𝑑𝑥

𝑎𝑥^ 𝑏𝑥^ = (𝑎𝑏)𝑥

= 6 𝑥^ 𝑑𝑥

𝒙 𝒍𝒏𝟔 +^ 𝒄

EXERCISE 9. 6 APPLICATION OF INDEFINITE INTEGRATION

1. Given slope 3 𝑥^2 + 4

𝑑𝑦 𝑑𝑥 = 3𝑥

𝑑𝑦 = 3 𝑥^2 + 4 𝑑𝑥

𝑑𝑦 = 3 𝑥^2 + 4 𝑑𝑥

𝑦 = 3 𝑥^

3 3 + 4𝑥^ +^ 𝑐

𝒚 = 𝟑𝒙𝟐^ + 𝟒𝒙 + 𝒄

3. Given slope 𝑥 𝑦−+1 1

𝑑𝑦 𝑑𝑥

𝑦^2 − 2 𝑦 = 𝑥^

2 2 +^ 𝑥^ +^ 𝑐^2

𝑦^2 − 2 𝑦 = 𝑥^2 + 2𝑥 + 2𝑐

𝒙𝟐^ − 𝒚𝟐^ + 𝟐𝒚 + 𝟐𝒙 + 𝟐𝒄 = 𝟎

5. Given slope (^) 𝑥𝑦^1

𝑑𝑦 𝑑𝑥 =

𝑦 2 2 =^

ln 𝑥 2 2 +^ 𝑐^2

𝒚𝟐^ = 𝒍𝒏𝒙𝟐^ + 𝟐𝒄

7. Given slope 𝑦^

2 𝑥 ,^ through^ 1, 𝑑𝑦 𝑑𝑥 =^

𝑦^2

𝑦^2 =^

4 =^ 𝑙𝑛𝑥^ +^ 𝑐

− ln 𝑥 −

4 =^ 𝑐

− ln 1 −

− ln 𝑥 −

4 = 0^4 𝑦

− 4 𝑦 ln 𝑥 − 4 + 𝑦 = 0 𝟒𝒚 𝐥𝐧 𝒙 − 𝒚 + 𝟒 = 𝟎

9. Given slope 𝑦, through 1, 𝑑𝑦 𝑑𝑥 =^ 𝑦

𝑦−

1 (^2) 𝑑𝑦 = 𝑑𝑥

1 2 1 2

2 𝑦^1 2 = 𝑥 + 𝑐

When 𝑥 = 1 , 𝑦 = 1 2 1 = 1 + 𝑐 ; 𝑐 = 1

2 𝑦^1 2 = 𝑥 + 𝑐

2

EXERCISE 9. 6 APPLICATION OF INDEFINITE INTEGRATION

11. Given slope 𝑥−^2 , through 1,

𝑑𝑦 𝑑𝑥 =

𝑥^2

𝑥^2

𝑥 +^ 𝑐

1 +^ 𝑐

𝑦 = − (^1) 𝑥 + 3 x

𝑥𝑦 = −1 + 3𝑥

𝒙𝒚 − 𝟑𝒙 + 𝟏 = 𝟎

a=-32 ft/sec^2

a=-

𝑑𝑦 𝑑𝑡 =^ −^32

𝑑𝑣 = − 32 𝑑𝑡

v=-32t+c

𝑑𝑠 𝑑𝑡

s=16t^2 + c 1 t + c 2

when t = 0, v = vo

v=-32t + c 1

vo= -32(0) + c 1

vo =c 1

v = -32t + vo when t = 1 sec, s=h=48ft h=-16t^2 + vot + c 1 48 = -16(1)^2 + vo(1) + c 2 64 - vo = c 2 When t = 0, s = 0, c 2 = 0 s = -16t^2 + vot when t = 1 sec, s = 48 s = -16t^2 + c 1 t 48 = -16(1)^2 + c 1 (1) c 1 = s=-16t^2 + 64t v = -32t + 64 @ max, v = 0 0 = -32t + 64 32t= t = 2 sec s = -16t^2 + 64t s = -16(2)^2 + 64(2) s = 64ft

EXERCISE 10.1 PRODUCT OF SINES AND COSINES

1. ʃ sin 5𝑥 sin 𝑥 𝑑𝑥

= 2 sin 𝑢 sin 𝑣 𝑑𝑥

= [cos 𝑢 − 𝑥 − cos(𝑢 + 𝑣)]𝑑𝑥

𝑢 = 5𝑥 𝑣 = 𝑥

=

ʃ [cos 5 𝑥 − 𝑥 − cos (5𝑥 + 𝑥)]𝑑𝑥

2 ʃ [cos 4𝑥 −^ cos 6𝑥]𝑑𝑥

=

[ ʃ cos 4𝑥𝑑𝑥 − ʃ cos 6𝑥𝑑𝑥

= 12 [^14 sin 4𝑥 − 16 sin 6𝑥 ] + 𝐶

𝟏𝟐 +^ 𝑪

3. ʃ sin 9 𝑥 − 3 cos 𝑥 + 5 𝑑𝑥

= 1 2 ʃ^ [sin^ 9x^ −^ 3 + x + 5^ + sin^9 𝑥 −^3 − 𝑥 −^5 𝑑𝑥

=

2 ʃ [sin^5 𝑥^ + 2^ + sin(3𝑥 −^ 8)]𝑑𝑥 𝑙𝑒𝑡 𝑧 = 5𝑥 + 2 ; 𝑙𝑒𝑡 𝑤 = 3𝑥 − 8 𝑑𝑧 𝑑𝑥 = 5^ ;^

5 =^ 𝑑𝑥^ ;^

3 =^ 𝑑𝑥

= 12 [− cos 𝑧 15 − 13 𝑐𝑜𝑠𝑤] + 𝐶

5. ʃ cos 3 𝑥 − 2 𝜋 cos 𝑥 + 𝜋 𝑑𝑥

=

ʃ [cos 𝑢 + 𝑣 + cos (𝑢 − 𝑣)]𝑑𝑥

𝑙𝑒𝑡 𝑢 = 3𝑥 − 2 𝜋 𝑣 = 𝑥 + 𝜋  𝑢 + 𝑣 = 3 𝑥 − 2 𝜋 + 𝑥 + 𝜋 = 4𝑥 − 𝜋  𝑢 − 𝑣 = 3 𝑥 − 2 𝜋 − 𝑥 + 𝜋 = 2𝑥 − 3 𝜋

=

2 ʃ [cos^4 𝑥 − 𝜋^ + cos(2𝑥 −^3 𝜋)]𝑑𝑥 𝑓𝑜𝑟 cos 4𝑥 − 𝜋 = cos 4𝑥𝑐𝑜𝑠𝜋 + 𝑠𝑖𝑛 4 𝑥𝑠𝑖𝑛𝜋 = −𝑐𝑜𝑠 4 𝑥 𝑓𝑜𝑟 cos 2𝑥 − 3 𝜋 = cos 2𝑥𝑐𝑜𝑠 3 𝜋 + sin 2𝑥𝑠𝑖𝑛 3 𝜋 = − cos 2𝑥

= 12 ʃ (cos 4𝑥 − cos 2𝑥)𝑑𝑥

= 12 [− 14 sin 4𝑥 − 12 sin 2𝑥] + 𝐶

EXERCISE 10.1 PRODUCT OF SINES AND COSINES

= 2 ʃ [sin 8 𝑥 + 3𝑥 + 𝑠𝑖𝑛𝑥 8 𝑥 − 3 𝑥 𝑑𝑥

= 2 ʃ [𝑠𝑖𝑛 11 𝑥 + sin 5𝑥]𝑑𝑥

𝑙𝑒𝑡 𝑢 = 11𝑥 ; 𝑙𝑒𝑡 𝑣 = 5𝑥 𝑑𝑢 𝑑𝑥 = 11^ ;^

11 =^ 𝑑𝑥^ ;^

5 =^ 𝑑𝑥

= 2[− 111 cos 11𝑥 − 15 cos 5𝑥 ] + 𝐶

= −

ʃ [cos 𝑢 − 𝑣 − cos (𝑢 + 𝑣)]𝑑𝑥

2 ʃ [𝑐𝑜𝑠^2 𝑥^ +^

2 − 𝑐𝑜𝑠^6 𝑥^ +^

6 ]𝑑𝑥

 𝑓𝑜𝑟 cos 2 𝑥 + 𝜋 2 = cos 2𝑥𝑐𝑜𝑠

− sin 2𝑥 sin

 𝑓𝑜𝑟 cos 6 𝑥 + 𝜋 6 = 𝑐𝑜𝑠 6 𝑥𝑐𝑜𝑠

6 − 𝑠𝑖𝑛^6 𝑥 𝑠𝑖𝑛

=^52 ʃ [− 𝑠𝑖𝑛 2 𝑥 − 23 𝑐𝑜𝑠 6 𝑥 +^12 𝑠𝑖𝑛 6 𝑥 ]𝑑𝑥

= 52 [^12 𝑐𝑜𝑠 2 𝑥 − 123 𝑠𝑖𝑛 6 𝑥 − 121 𝑠𝑖𝑥 6 𝑥 + 𝐶

= 𝟓𝟒 𝒄𝒐𝒔 𝟐𝒙 − 𝟓𝟐𝟒^ 𝟑 𝒔𝒊𝒏 𝟔𝒙 − (^) 𝟏𝟐𝟓 𝒔𝒊𝒏 𝟔𝒙 + 𝑪

EXERCISE 10 .2 POWER OF SINES AND COSINES

7. ( 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)^2 dx

= (𝑠𝑖𝑛𝑥 + 2 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 + 𝑐𝑜𝑠^2 𝑥)𝑑𝑥

1 (^2) 𝑐𝑜𝑠𝑥𝑑𝑥 + 𝑐𝑜𝑠^2 𝑥𝑑𝑥

1 (^2) 𝑐𝑜𝑠𝑥𝑑𝑥 + (1+𝑐𝑜𝑠 2 2 𝑥)𝑑𝑥

Let u = sinx 𝑑𝑢 𝑑𝑥 =^ 𝑐𝑜𝑠𝑥 𝑑𝑢 = 𝑐𝑜𝑠𝑥𝑑𝑥

= 𝑠𝑖𝑛𝑥𝑑𝑥 + 2 𝑢

1 (^2) 𝑑𝑢 + 1 2 𝑑𝑥^ +^

𝑐𝑜𝑠 2 𝑥 2 𝑑𝑥

= - 𝑐𝑜𝑠𝑥 + 2 23 𝑢

3 (^2) + 𝑥 2 + 𝑠𝑖𝑛 4 2 𝑥+ 𝐶

𝟑 𝟐 (^) + 𝒙𝟐 + 𝒔𝒊𝒏𝟐𝒙𝟒 + 𝑪

9. (𝑠𝑖𝑛 3 𝑥 + 𝑐𝑜𝑠 2 𝑥)^2 𝑑𝑥

= 𝑠𝑖𝑛^23 𝑥 + 2𝑠𝑖𝑛 3 𝑥𝑐𝑜𝑠 2 𝑥 + 𝑐𝑜𝑠^22 𝑥 𝑑𝑥

= 𝑠𝑖𝑛^2 3 𝑥 𝑑𝑥 + 2 𝑠𝑖𝑛 3 𝑥𝑐𝑜𝑠 2 𝑥 𝑑𝑥 + 𝑐𝑜𝑠^22 𝑥 𝑑𝑥

11. 𝑐𝑜𝑠^2 4 𝑥 𝑑𝑥

𝟏𝟑. 𝑠𝑖𝑛^3 2 𝑥 𝑑𝑥

= 𝑠𝑖𝑛^2 2 𝑥 𝑠𝑖𝑛 2 𝑥 𝑑𝑥

= 1 − 𝑐𝑜𝑠^2 2 𝑥 𝑠𝑖𝑛 2 𝑥 𝑑𝑥

= 1 − 𝑢^2 −

3 3 +^ 𝑐

=

𝟐 𝒄𝒐𝒔𝟐𝒙^ +^

𝟏𝟓. 𝑠𝑖𝑛^7 𝑥 𝑐𝑜𝑠^2 𝑥 𝑑𝑥

= 𝑠𝑖𝑛^7 𝑥 𝑐𝑜𝑠^2 𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥

= 𝑠𝑖𝑛^7 𝑥 1 − 𝑠𝑖𝑛^2 𝑥 𝑐𝑜𝑠𝑥𝑑𝑥

= 𝑠𝑖𝑛^7 𝑥 − 𝑠𝑖𝑛^9 𝑥 𝑐𝑜𝑠𝑥 𝑑𝑥 u=sinx du=cosxdx

= 𝑢^7 − 𝑢^9 𝑑𝑢

𝑢^8

𝑢^10

10 +^ 𝑐

= 𝟏𝟖 𝒔𝒊𝒏𝟖^ 𝒙 − 𝟏𝟎𝟏 𝒔𝒊𝒏𝟏𝟎^ 𝒙 + 𝒄

EXERCISE 10.3 POWER OF TANGENTS AND SECANTS

1. 𝑡𝑎𝑛^22 𝑥𝑠𝑒𝑐^42 𝑥𝑑𝑥

= 𝑡𝑎𝑛^22 𝑥𝑠𝑒𝑐^22 𝑥𝑠𝑒𝑐^22 𝑥𝑑𝑥

= 𝑡𝑎𝑛^22 𝑥(1 + 𝑡𝑎𝑛^22 𝑥)𝑠𝑒𝑐^22 𝑥𝑑𝑥

= (𝑡𝑎𝑛^22 𝑥 + 𝑡𝑎𝑛^42 𝑥)𝑠𝑒𝑐^22 𝑥𝑑𝑥

= 2𝑠𝑒𝑐^22 𝑥

= 𝑠𝑒𝑐^22 𝑥𝑑𝑥

= (𝑢^2 + 𝑢^4 )(𝑑𝑢 2 )

= 12 (𝑢^2 + 𝑢^4 )𝑑𝑢

3 3 +^

𝑢^5 5 +^ 𝑐

𝟑𝟐𝒙 𝟔 +^

𝒕𝒂𝒏𝟓𝟐𝒙 𝟏𝟎 +^ 𝒄

3. 𝑡𝑎𝑛𝑥 𝑠𝑒𝑐^6 𝑥𝑑𝑥 ; 𝐶𝐴𝑆𝐸 𝐼

1 2 𝑥 (^) 𝑠𝑒𝑐^4 𝑥𝑠𝑒𝑐^2 𝑥𝑑𝑥

1 (^2) 𝑥(1 + 𝑡𝑎𝑛^2 𝑥)^2 𝑠𝑒𝑐^2 𝑥𝑑𝑥

1 (^2) 𝑥(1 + 2𝑡𝑎𝑛^2 𝑥 + 𝑡𝑎𝑛^4 𝑥)𝑠𝑒𝑐^2 𝑥𝑑𝑥

1 (^2) 𝑥 + 2𝑡𝑎𝑛

5 (^2) 𝑥 + 𝑡𝑎𝑛

9 (^2) 𝑥)𝑠𝑒𝑐^2 𝑥𝑑𝑥

𝑑𝑥 =^ 𝑠𝑒𝑐

1 (^2) 𝑥 + 2𝑢 5 (^2) 𝑥 + 𝑢 9 (^2) 𝑥)𝑑𝑢

(^32) 3 +^

4 𝑢 (^72) 7 +^

2 𝑢 (^112) 11 +^ 𝑐

𝟑𝟐 𝒙 𝟑 +^

𝟒𝒕𝒂𝒏 𝟕𝟐 𝒙 𝟕 +^

𝟐 𝒕𝒂𝒏 𝟏𝟏𝟐 𝒙 𝟏𝟏 +^ 𝒄

5. ____ 12 𝑥𝑑𝑥 → 𝑎𝑛𝑠. 𝑦 = 23 𝑡𝑎𝑛 32 𝑥 − 2 𝑡𝑎𝑛 𝑥 2 + 𝑥 + 𝑐

= 𝑡𝑎𝑛^2

𝑠𝑒𝑐^2

− 𝑠𝑒𝑐^2

= 𝑡𝑎𝑛^2

2 −^ (𝑠𝑒𝑐

2 −^ 1)

= 𝑡𝑎𝑛^2

𝑠𝑒𝑐^2

− 𝑡𝑎𝑛^2

= 𝑡𝑎𝑛^2

2 −^ 1)

= 𝑡𝑎𝑛^2

(𝑡𝑎𝑛^2

𝑑𝑦 = 𝑡𝑎𝑛^4 𝑥 2 dx

7. (𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛 𝑥)^2 𝑑𝑥

= (𝑠𝑒𝑐^2 𝑥 + 2 𝑠𝑒𝑐𝑥 𝑡𝑎𝑛 𝑥 + 𝑡𝑎𝑛^2 𝑥) 𝑑𝑥

= 𝑡𝑎𝑛𝑥 + 2 𝑠𝑒𝑐𝑥 + 𝑡𝑎𝑛^2 𝑥 𝑑𝑥

= 𝑡𝑎𝑛𝑥 + 2 𝑠𝑒𝑐𝑥 + (𝑠𝑒𝑐^2 𝑥 − 1 ) 𝑑𝑥

EXERCISE 10.4 POWER OF COTANGENTS AND COSECANTS

1. 𝑐𝑜𝑡^4 𝑥𝑐𝑠𝑐^4 𝑥𝑑𝑥

= 𝑐𝑜𝑡^4 𝑥(1 + 𝑐𝑜𝑡^2 𝑥)𝑐𝑠𝑐^2 𝑥𝑑𝑥

= (𝑐𝑜𝑡^4 𝑥 + 𝑐𝑜𝑡^6 𝑥)𝑐𝑠𝑐^2 𝑥𝑑𝑥

𝑑𝑥 =^ −𝑐𝑠𝑐

= − (𝑢^4 + 𝑢^6 )𝑑𝑢

5 5 +^

𝑢^7

7 +c

𝟓𝒙 𝟓 +^

𝒄𝒐𝒕𝟕𝒙

𝟕 +c

3. 𝑐𝑜𝑡^54 𝑥𝑑𝑥

= 𝑐𝑜𝑡^34 𝑥𝑐𝑜𝑡^24 𝑥𝑑𝑥

= 𝑐𝑜𝑡^34 𝑥(𝑐𝑠𝑐^24 𝑥 − 1)𝑑𝑥

= (𝑐𝑜𝑡^34 𝑥𝑐𝑠𝑐^24 𝑥 − 𝑐𝑜𝑡^34 𝑥)𝑑𝑥

= [𝑐𝑜𝑡^34 𝑥𝑐𝑠𝑐^24 𝑥 − (𝑐𝑠𝑐^24 𝑥 − 1)𝑐𝑜𝑡 4 𝑥]𝑑𝑥

= 𝑐𝑜𝑡^34 𝑥𝑐𝑠𝑐^24 𝑥𝑑𝑥 − 𝑐𝑜𝑡 4 𝑥𝑐𝑠𝑐^24 𝑥𝑑𝑥 − 𝑐𝑜𝑡 4 𝑥𝑑𝑥

= 𝑐𝑠𝑐^24 𝑥𝑑𝑥

=− 14 𝑢^3 𝑑𝑢 − 14 𝑢𝑑𝑢 + 14 𝑙𝑛 (𝑐𝑜𝑠 4 𝑥)

4 4 𝑑𝑥 −^

𝑢^2 2 +^

1 4 𝑙𝑛 𝑐𝑜𝑠^4 𝑥^ +^ 𝑐

𝟒𝟒𝒙 𝟏𝟔 +^

𝒄𝒐𝒕𝟐𝟒𝒙 𝟖 +^

𝟏 𝟒 𝒍𝒏 𝒄𝒐𝒔𝟒𝒙^ +^ 𝒄

5. 𝑐𝑜𝑠 3 𝑥 𝑐𝑠𝑐^4 3 𝑥 𝑑𝑥

1 (^2 3) 𝑥 𝑐𝑠𝑐^2 3 𝑥 𝑐𝑠𝑐^2 3 𝑥 𝑑𝑥

= 𝑐𝑜𝑡

1 (^2 3) 𝑥 1 + 𝑐𝑜𝑡^2 3 𝑥 𝑐𝑠𝑐^2 3 𝑥 𝑑𝑥

= 𝑐𝑜𝑡

1 (^2 3) 𝑥 + 𝑐𝑜𝑡

5 (^2 3) 𝑥 𝑐𝑠𝑐^2 3 𝑥 𝑑𝑥

𝑙𝑒𝑡 𝑢 = 𝑐𝑜𝑡 3 𝑥 𝑑𝑢 𝑑𝑥

= − 3 𝑐𝑠𝑐^2 3 𝑥

= 𝑐𝑠𝑐^2 3 𝑥 𝑑𝑥

1 (^2) + 𝑢

5 (^2) 𝑑𝑢

(^32) 3 2

(^72) 7 2

𝟑 𝟐 (^) 𝟑𝒙 − 𝟐 𝟐𝟏 𝒄𝒐𝒕

𝟕 𝟐 (^) 𝟑𝒙 + 𝒄

EXERCISE 10.4 POWER OF COTANGENTS AND COSECANTS

7. 𝑐𝑜𝑠^

(^5 2) 𝑥𝑑𝑥 𝑠𝑖𝑛 8 2 𝑥 =^

𝑐𝑜𝑠 5 2 𝑥𝑑𝑥 𝑠𝑖𝑛 5 2 𝑥

1 𝑠𝑖𝑛 3 2 𝑥 𝑑𝑥

= 𝑐𝑜𝑡^5 2 𝑥 𝑐𝑠𝑐^3 2 𝑥 𝑑𝑥 \

= 𝑐𝑜𝑡^4 2 𝑥 𝑐𝑠𝑐^2 2 𝑥 𝑐𝑠𝑐 2 𝑥 𝑐𝑜𝑡 2 𝑥 𝑑𝑥

= 𝑐𝑠𝑐^2 2 𝑥 − 1 2 𝑐𝑠𝑐^2 2 𝑥 𝑐𝑠𝑐 2 𝑥 𝑐𝑜𝑡 2 𝑥 𝑑𝑥

= 𝑐𝑠𝑐^4 2 𝑥 − 2 𝑐𝑠𝑐^2 2 𝑥 + 1 𝑐𝑠𝑐^2 2 𝑥 𝑐𝑠𝑐 2 𝑥 𝑐𝑜𝑡 2 𝑥 𝑑𝑥

= 𝑐𝑠𝑐^6 2 𝑥 − 2 𝑐𝑠𝑐^4 2 𝑥 + 𝑐𝑠𝑐^2 2 𝑥 𝑐𝑠𝑐 2 𝑥 𝑐𝑜𝑡 2 𝑥 𝑑𝑥

𝑙𝑒𝑡 𝑢 = 𝑐𝑠𝑐 2 𝑥

𝑑𝑢 𝑑𝑥 =^ −^2 𝑐𝑠𝑐^2 𝑥 𝑐𝑜𝑡^2 𝑥

2 =^ 𝑐𝑠𝑐^2 𝑥 𝑐𝑜𝑡^2 𝑥 𝑑𝑥

𝑢^6 − 2 𝑢^4 + 𝑢^2 𝑑𝑢

7 7 −^

2 𝑢^5 5 +^

𝑢^3 3 +^ 𝑐

= −

𝒄𝒔𝒄𝟕^ 𝟐𝒙

𝒄𝒔𝒄𝟓^ 𝟐𝒙

𝒄𝒔𝒄𝟑^ 𝟐𝒙

9. 𝑐𝑠𝑐^

(^4) 𝑥 𝑐𝑜𝑡 6 𝑥 𝑑𝑥

= 𝑐𝑜𝑡−^6 𝑥 𝑐𝑠𝑐^2 𝑥 𝑐𝑠𝑐^2 𝑥 𝑑𝑥

= 𝑐𝑜𝑡−^6 𝑥 1 + 𝑐𝑜𝑡^2 𝑥 𝑐𝑠𝑐^2 𝑥 𝑑𝑥

= 𝑐𝑜𝑡−^6 𝑥 + 𝑐𝑜𝑡−^4 𝑥 𝑐𝑠𝑐^2 𝑥 𝑑𝑥

= − 𝑐𝑠𝑐^2 𝑥 𝑑𝑥

−𝑑𝑢 = 𝑐𝑠𝑐^2 𝑥𝑑𝑥

= − 1 𝑢−^6 + 𝑢−^4 𝑑𝑥

𝑢−^5

𝑢−^3

3 +^ 𝑐

= 𝑐𝑜𝑡^

− (^5) 𝑥 5 +^

𝑐𝑜𝑡 −^3 𝑥 3 +^ 𝑐

=

𝒕𝒂𝒏𝟓^ 𝒙

𝒕𝒂𝒏𝟑^ 𝒙