Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Least-Square Data Fitting in Advanced Linear Algebra, Lecture notes of Machine Learning

Examples and explanations of least-square data fitting techniques in advanced linear algebra. It covers fitting lines, curves, and projection operators using matrices and orthonormal/unitary bases. Topics include matrix inversion, projection onto subspaces, and orthogonal/unitary transformations.

Typology: Lecture notes

2018/2019

Uploaded on 11/01/2019

chetan-reddy
chetan-reddy 🇺🇸

9 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Norm ?
Inner product ?
EE 230 Advanced Linear Algebra 1
𝑹𝒏 𝑹$, Hilbert space (vector space of infinite dimension)
aTb=
i
aibidxa(x)b(x)
0 10 20 30 40 50
-1.0
-0.5
0.0
0.5
1.0
0π
4
π
2
3π
4
π
-1.0
-0.5
0.0
0.5
1.0
0
π
4
π
2
3π
4π
cos x
<latexit sha1_base64="aiLdzmrRlw6Op6DwHSm78GzoPgM=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5Xy</latexit>
<latexit sha1_base64="aiLdzmrRlw6Op6DwHSm78GzoPgM=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5Xy</latexit>
<latexit sha1_base64="aiLdzmrRlw6Op6DwHSm78GzoPgM=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5Xy</latexit>
<latexit sha1_base64="I9en/qoSrY5us6/XbodKI7cbGRA=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRnQKvFzUoYc9X7ppxvGJBVUGsKx1h3fS0wvw8owwunE7aaaJpiM8IB2LJVYUN3LZttOUMUqIYpiZUsaNFP/TmRYaD0Wge0U2Az1sjcV//M6qYmuehmTSWqoJPOPopQjE6Pp6ShkihLDxwsPBmLiVkKGiWJ2eUSGWGFibGKuTcVfzmCVNM+rvuV3F+XadZ5PEU7gFM7Ah0uowS3UoQEEHuAFXuHNeXbenQ/nc95acPKZY1iA8/ULIZ+Vqg==</latexit>
sin x
<latexit sha1_base64="VCqdY7h4fLBoZVaECgqCJeFTVM4=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3</latexit>
<latexit sha1_base64="VCqdY7h4fLBoZVaECgqCJeFTVM4=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3</latexit>
<latexit sha1_base64="VCqdY7h4fLBoZVaECgqCJeFTVM4=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3</latexit>
<latexit sha1_base64="D5x5+rhsuocTTamHwcTXpdxk0l8=">AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaq3gxolfg5KUOOer/00w1jkgoqDeFY647vJaaXYWUY4XTidlNNE0xGeEA7lkosqO5ls20nqGKVEEWxsiUNmql/JzIstB6LwHYKbIZ62ZuK/3md1ERXvYzJJDVUkvlHUcqRidH0dBQyRYnh44UHAzFxKyHDRDG7PCJDrDAxNjHXpuIvZ7BKmudV3/K7i3LtOs+nCCdwCmfgwyXU4Bbq0AACD/ACr/DmPDvvzofzOW8tOPnMMSzA+foFKayVrw==</latexit>
vectorization
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Least-Square Data Fitting in Advanced Linear Algebra and more Lecture notes Machine Learning in PDF only on Docsity!

  • Norm?
  • Inner product?

𝒏

$

, Hilbert space (vector space of infinite dimension)

a

T

b =

i

a

i

b

i

dxa ( x ) b ( x )

0 10 20 30 40 50

0

π

4

π

2

3 π

4

π

0

π

4

π

2

3 π

4 π

cos x

AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRnQKvFzUoYc9X7ppxvGJBVUGsKx1h3fS0wvw8owwunE7aaaJpiM8IB2LJVYUN3LZttOUMUqIYpiZUsaNFP/TmRYaD0Wge0U2Az1sjcV//M6qYmuehmTSWqoJPOPopQjE6Pp6ShkihLDxwsPBmLiVkKGiWJ2eUSGWGFibGKuTcVfzmCVNM+rvuV3F+XadZ5PEU7gFM7Ah0uowS3UoQEEHuAFXuHNeXbenQ/nc95acPKZY1iA8/ULIZ+Vqg==

sin x AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaq3gxolfg5KUOOer/00w1jkgoqDeFY647vJaaXYWUY4XTidlNNE0xGeEA7lkosqO5ls20nqGKVEEWxsiUNmql/JzIstB6LwHYKbIZ62ZuK/3md1ERXvYzJJDVUkvlHUcqRidH0dBQyRYnh44UHAzFxKyHDRDG7PCJDrDAxNjHXpuIvZ7BKmudV3/K7i3LtOs+nCCdwCmfgwyXU4Bbq0AACD/ACr/DmPDvvzofzOW8tOPnMMSzA+foFKayVrw==

vectorization

0

π

4

π

2

3 π

4

π

0

π

4

π

2

3 π

4

π

cos x

AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRxolfhzUq4VIUe9X/rphjFJBZWGcKx1x/cS08uwMoxwOnG7qaYJJiM8oB1LJRZU97J82wmqWCVEUaxsSYNy9e9EhoXWYxHYToHNUC97U/E/r5Oa6KqXMZmkhkoy+yhKOTIxmp6OQqYoMXy88GAgJm4lZJgoZpdHZIgVJsYm5tpU/OUMVknzvOpbfndRrl3P4oEinMApnIEPl1CDW6hDAwg8wAu8wpvz7Lw7H87nrLXgzGeOYQHO1y+IP5XyAAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7JJYo6d+qexVvRnQKvFzUoYc9X7ppxvGJBVUGsKx1h3fS0wvw8owwunE7aaaJpiM8IB2LJVYUN3LZttOUMUqIYpiZUsaNFP/TmRYaD0Wge0U2Az1sjcV//M6qYmuehmTSWqoJPOPopQjE6Pp6ShkihLDxwsPBmLiVkKGiWJ2eUSGWGFibGKuTcVfzmCVNM+rvuV3F+XadZ5PEU7gFM7Ah0uowS3UoQEEHuAFXuHNeXbenQ/nc95acPKZY1iA8/ULIZ+Vqg==

sin x AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6bTLmzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaqXg60Svw5KdeKkKPeL/10w5ikgkpDONa643uJ6WVYGUY4nbjdVNMEkxEe0I6lEguqe1m+7QRVrBKiKFa2pEG5+nciw0LrsQhsp8BmqJe9qfif10lNdNXLmExSQyWZfRSlHJkYTU9HIVOUGD5eeDAQE7cSMkwUs8sjMsQKE2MTc20q/nIGq6R5XvUtv7so165n8UARTuAUzsCHS6jBLdShAQQe4AVe4c15dt6dD+dz1lpw5jPHsADn6xeQTJX3AAAB/nicbVDLSgMxFL1TX3V8VV26CZaCqzIjgi6LblxWsA9oS8lkMm1skhmSjFiGgp/gVj/Anbj1V1z7I6btLGzrgQuHc+5N7j1Bwpk2nvftFNbWNza3itvuzu7e/kHp8Kip41QR2iAxj1U7wJpyJmnDMMNpO1EUi4DTVjC6mfqtR6o0i+W9GSe0J/BAsogRbKzU7Gom0VO/VPaq3gxolfg5KUOOer/00w1jkgoqDeFY647vJaaXYWUY4XTidlNNE0xGeEA7lkosqO5ls20nqGKVEEWxsiUNmql/JzIstB6LwHYKbIZ62ZuK/3md1ERXvYzJJDVUkvlHUcqRidH0dBQyRYnh44UHAzFxKyHDRDG7PCJDrDAxNjHXpuIvZ7BKmudV3/K7i3LtOs+nCCdwCmfgwyXU4Bbq0AACD/ACr/DmPDvvzofzOW8tOPnMMSzA+foFKayVrw==

⟨ f | g ⟩ =

b

a

f *( x ) g ( x ) dx

𝒏

$

, Hilbert space (vector space of infinite dimension)

&

  • norm of 𝑓(𝑥) over interval [𝑎, 𝑏]

⟨sin x | cos x ⟩ =

π / 2

0

sin x cos xdx =

⟨sin x | cos x ⟩ =

π

0

sin x cos xdx = 0

∥ sin x ∥ =

π / 2

0

sin x

2

dx =

π

4

∥ sin x ∥ =

π

0

sin x

2

dx =

π

2

∥ f ∥ =

b

a

| f |

2

d x

Least-Square of continuous function

c

1

f

1

( x ) + c

2

f

2

( x ) = g ( x )

⋮ ⋮

| |

f

1

( x

i

) f

2

( x

i

)

| |

⋮ ⋮

[

c

1

c

2

]

=

|

g ( x

i

)

|

Minimize ∫

7

8

=

=

&

&

&

𝒎×𝟐

𝒎×𝟏

[

c

1

c

2

]

= ( A

T

A )

− 1

2 × 2

( A

T

b )

2 × 1

Orthonormal basis on [𝑎, 𝑏]: hf

i

|f

j

i =

Z

b

a

dxf

i

(x)f

j

(x) =

ij

AAACOHicbVDLbtQwFL1peQzDayhLNhajSoXFKCmVyqZoBBuWReq0lSbT6Ma5mbp1nMi+QR2F+Ru+gk9gCxt2SCwQW76gnkwXfR3J1vE5917bJ620chyGv4KV1Tt3793vPOg+fPT4ydPes7V9V9ZW0kiWurSHKTrSytCIFWs6rCxhkWo6SE8/LPyDz2SdKs0ezyqaFDg1KlcS2UtJ712s0Uw1iTxRX/LkRMS2Pe/EynCCR6nIzhbe0euNs1fe9/tOnJFmTBp1Mk96/XAQthA3SXRB+sMOtNhNen/irJR1QYalRufGUVjxpEHLSmqad+PaUYXyFKc09tRgQW7StP+ci3WvZCIvrV+GRate7miwcG5WpL6yQD52172FeJs3rjl/O2mUqWomI5cX5bUWXIpFaCJTliTr2ZWBaTHvrmcKpVX+8UIeo0XJPuuuTyW6nsFNsr85iN4MNj9t9Yfvl/FAB17AS9iACLZhCB9hF0Yg4St8hx/wM/gW/A7+Bv+WpSvBRc9zuILg/znxzKyf

c i

= hf i

|gi =

Z

b

a

dxf

i

(x)g(x)

AAACK3icbVDLSgMxFL1TX7W+qi7dBIugLsqMCropFN24rGCr0GmHTCYzhmYyQ5IRS+13+BV+glv9AFeKO/E/TKddaPXAhZNz7r1Jjp9yprRtv1mFmdm5+YXiYmlpeWV1rby+0VJJJgltkoQn8trHinImaFMzzel1KimOfU6v/N7ZyL+6pVKxRFzqfko7MY4ECxnB2khe2SEeq7kci4hTFHrsPnJlfqi5TGgPd30U3I2M7v7u3V5kyitX7KqdA/0lzoRU6kXI0fDKn26QkCymQhOOlWo7dqo7Ayw1I5wOS26maIpJD0e0bajAMVWdQf61IdoxSoDCRJoSGuXqz4kBjpXqx77pjLG+UdPeSPzPa2c6POkMmEgzTQUZXxRmHOkEjXJCAZOUaN7/tdCPh6WdgGEimXk8IjdYYqJNvCWTijOdwV/SOqg6h9WDi6NK/XQcDxRhC7ZhFxw4hjqcQwOaQOABnuAZXqxH69V6tz7GrQVrMrMJv2B9fQMD6KcI

i = 1 or 2 AAACCXicbVDLSsNAFL2prxofrbp0M1gKrkpSBd0IRTcuK9gHtKFMJpN26EwmzEzEEvIFfoJb/QB34tavcO2PmD4W2npWh3Puvedy/JgzbRznyyqsrW9sbhW37Z3dvf1S+eCwrWWiCG0RyaXq+lhTziLaMsxw2o0VxcLntOOPb6Z+54EqzWR0byYx9QQeRixkBJtcGpRL7MrtC18+pkgqlNUH5YpTc2ZAq8RdkEqjCDM0B+XvfiBJImhkCMda91wnNl6KlWGE08zuJ5rGmIzxkPZyGmFBtZfOHs9QNVcCFObJoYwMmqm/N1IstJ4IP58U2Iz0sjcV//N6iQkvvZRFcWJoROZBYcKRkWjaAgqYosTwyZ+DvsjsasAwUSx/HpERVpiYvDw7b8Vd7mCVtOs196xWvzuvNK7n9UARjuEETsGFC2jALTShBQQSeIYXeLWerDfr3fqYjxasxc4R/IH1+QMnP5l8

Least-Square Data fitting

b ( t ) = Cf

1

( t ) + Df

2

( t )

[1, 1 , · · · 1]

AAACBnicbVDLSsNAFL3xWeOr6tLNYCm4KCURQZdFNy4r2AeksUwmk3boJBNmJkIJ3fsJbvUD3Ilbf8O1P+I07cK2HrhwOOe+OEHKmdKO822trW9sbm2Xduzdvf2Dw/LRcVuJTBLaIoIL2Q2wopwltKWZ5rSbSorjgNNOMLqd+p0nKhUTyYMep9SP8SBhESNYG+nRc2turUdCoRVy/X654tSdAmiVuHNSaZSgQLNf/umFgmQxTTThWCnPdVLt51hqRjid2L1M0RSTER5Qz9AEx1T5efH1BFWNEqJISFOJRoX6dyLHsVLjODCdMdZDtexNxf88L9PRtZ+zJM00TcjsUJRxpAWaRoBCJinRfLywMIgndjVkmEhmnkdkiCUm2iRnm1Tc5QxWSfui7hp+f1lp3MzigRKcwhmcgwtX0IA7aEILCEh4gVd4s56td+vD+py1rlnzmRNYgPX1C/O2mEU=AAACBnicbVDLSsNAFL3xWeOr6tLNYCm4KCURQZdFNy4r2AeksUwmk3boJBNmJkIJ3fsJbvUD3Ilbf8O1P+I07cK2HrhwOOe+OEHKmdKO822trW9sbm2Xduzdvf2Dw/LRcVuJTBLaIoIL2Q2wopwltKWZ5rSbSorjgNNOMLqd+p0nKhUTyYMep9SP8SBhESNYG+nRc2turUdCoRVy/X654tSdAmiVuHNSaZSgQLNf/umFgmQxTTThWCnPdVLt51hqRjid2L1M0RSTER5Qz9AEx1T5efH1BFWNEqJISFOJRoX6dyLHsVLjODCdMdZDtexNxf88L9PRtZ+zJM00TcjsUJRxpAWaRoBCJinRfLywMIgndjVkmEhmnkdkiCUm2iRnm1Tc5QxWSfui7hp+f1lp3MzigRKcwhmcgwtX0IA7aEILCEh4gVd4s56td+vD+py1rlnzmRNYgPX1C/O2mEU=AAACBnicbVDLSsNAFL3xWeOr6tLNYCm4KCURQZdFNy4r2AeksUwmk3boJBNmJkIJ3fsJbvUD3Ilbf8O1P+I07cK2HrhwOOe+OEHKmdKO822trW9sbm2Xduzdvf2Dw/LRcVuJTBLaIoIL2Q2wopwltKWZ5rSbSorjgNNOMLqd+p0nKhUTyYMep9SP8SBhESNYG+nRc2turUdCoRVy/X654tSdAmiVuHNSaZSgQLNf/umFgmQxTTThWCnPdVLt51hqRjid2L1M0RSTER5Qz9AEx1T5efH1BFWNEqJISFOJRoX6dyLHsVLjODCdMdZDtexNxf88L9PRtZ+zJM00TcjsUJRxpAWaRoBCJinRfLywMIgndjVkmEhmnkdkiCUm2iRnm1Tc5QxWSfui7hp+f1lp3MzigRKcwhmcgwtX0IA7aEILCEh4gVd4s56td+vD+py1rlnzmRNYgPX1C/O2mEU=AAACBnicbVDLSgMxFM34rOOr6tJNsBRclDIRQZdFNy4r2AdMx5LJZNrQZDIkGaEM3fsJbvUD3Ilbf8O1P2LazsK2HrhwOOe+OGHKmTae9+2srW9sbm2Xdtzdvf2Dw/LRcVvLTBHaIpJL1Q2xppwltGWY4bSbKopFyGknHN1O/c4TVZrJ5MGMUxoIPEhYzAg2Vnr0UQ3VeiSSRkMU9MsVr+7NAFcJKkgFFGj2yz+9SJJM0MQQjrX2kZeaIMfKMMLpxO1lmqaYjPCA+pYmWFAd5LOvJ7BqlQjGUtlKDJypfydyLLQei9B2CmyGetmbiv95fmbi6yBnSZoZmpD5oTjj0Eg4jQBGTFFi+HhhYSgmbjVimChmn4dkiBUmxibn2lTQcgarpH1RR5bfX1YaN0U+JXAKzsA5QOAKNMAdaIIWIECBF/AK3pxn5935cD7nrWtOMXMCFuB8/QKNFpf9

[t 1

, t 2

, · · · t m

]

AAACDnicbVDLSsNAFL2pr1pf9bFzM1gEF6UkRdBl0Y1LBWsLbQiTybQdOpOEmRuhlv6Dn+BWP8CduPUXXPsjTtMu1HrgwuGc++KEqRQGXffTKSwtr6yuFddLG5tb2zvl3b07k2Sa8SZLZKLbITVcipg3UaDk7VRzqkLJW+Hwcuq37rk2IolvcZRyX9F+LHqCUbRSUD7oYOBVMahXuyxK0BAMlB+UK27NzUEWiTcnlUYRclwH5a9ulLBM8RiZpMZ0PDdFf0w1Cib5pNTNDE8pG9I+71gaU8WNP86/n5Bjq0Skl2hbMZJc/TkxpsqYkQptp6I4MH+9qfif18mwd+6PRZxmyGM2O9TLJMGETKMgkdCcoRz9WhiqSek4EpRpYZ8nbEA1ZWgTLNlUvL8ZLJK7es2z/Oa00riYxQNFOIQjOAEPzqABV3ANTWDwAE/wDC/Oo/PqvDnvs9aCM5/Zh19wPr4BvFubaA==AAACDnicbVDLSsNAFL2pr1pf9bFzM1gEF6UkRdBl0Y1LBWsLbQiTybQdOpOEmRuhlv6Dn+BWP8CduPUXXPsjTtMu1HrgwuGc++KEqRQGXffTKSwtr6yuFddLG5tb2zvl3b07k2Sa8SZLZKLbITVcipg3UaDk7VRzqkLJW+Hwcuq37rk2IolvcZRyX9F+LHqCUbRSUD7oYOBVMahXuyxK0BAMlB+UK27NzUEWiTcnlUYRclwH5a9ulLBM8RiZpMZ0PDdFf0w1Cib5pNTNDE8pG9I+71gaU8WNP86/n5Bjq0Skl2hbMZJc/TkxpsqYkQptp6I4MH+9qfif18mwd+6PRZxmyGM2O9TLJMGETKMgkdCcoRz9WhiqSek4EpRpYZ8nbEA1ZWgTLNlUvL8ZLJK7es2z/Oa00riYxQNFOIQjOAEPzqABV3ANTWDwAE/wDC/Oo/PqvDnvs9aCM5/Zh19wPr4BvFubaA==AAACDnicbVDLSsNAFL2pr1pf9bFzM1gEF6UkRdBl0Y1LBWsLbQiTybQdOpOEmRuhlv6Dn+BWP8CduPUXXPsjTtMu1HrgwuGc++KEqRQGXffTKSwtr6yuFddLG5tb2zvl3b07k2Sa8SZLZKLbITVcipg3UaDk7VRzqkLJW+Hwcuq37rk2IolvcZRyX9F+LHqCUbRSUD7oYOBVMahXuyxK0BAMlB+UK27NzUEWiTcnlUYRclwH5a9ulLBM8RiZpMZ0PDdFf0w1Cib5pNTNDE8pG9I+71gaU8WNP86/n5Bjq0Skl2hbMZJc/TkxpsqYkQptp6I4MH+9qfif18mwd+6PRZxmyGM2O9TLJMGETKMgkdCcoRz9WhiqSek4EpRpYZ8nbEA1ZWgTLNlUvL8ZLJK7es2z/Oa00riYxQNFOIQjOAEPzqABV3ANTWDwAE/wDC/Oo/PqvDnvs9aCM5/Zh19wPr4BvFubaA==AAACDnicbVDLSsNAFJ3UV42v+Ni5GSwFF6UkRdBl0Y3LCvYBbQiTybQdOpOEmRuhlv6Dn+BWP8CduPUXXPsjTtsstPXAhcM598UJU8E1uO6XVVhb39jcKm7bO7t7+wfO4VFLJ5mirEkTkahOSDQTPGZN4CBYJ1WMyFCwdji6mfntB6Y0T+J7GKfMl2QQ8z6nBIwUOCddCLwKBLVKj0YJaAyB9AOn5FbdOfAq8XJSQjkagfPdixKaSRYDFUTrruem4E+IAk4Fm9q9TLOU0BEZsK6hMZFM+5P591NcNkqE+4kyFQOeq78nJkRqPZah6ZQEhnrZm4n/ed0M+lf+hMdpBiymi0P9TGBI8CwKHHHFKIjxn4WhnNrliBOquHke0yFRhIJJ0DapeMsZrJJWreoZfndRql/n+RTRKTpD58hDl6iOblEDNRFFj+gZvaBX68l6s96tj0VrwcpnjtEfWJ8/VbubIA==

& subspace of

I

[b 1

, b 2

, · · · b m

]

AAACDnicbVDLSgMxFL1TX7W+6mPnJlgKLkqZKYIui25cVrAPaIchyaRtaDIzJBmhlv6Dn+BWP8CduPUXXPsjptMutPXAhcM598UhieDauO6Xk1tb39jcym8Xdnb39g+Kh0ctHaeKsiaNRaw6BGsmeMSahhvBOoliWBLB2mR0M/PbD0xpHkf3ZpwwX+JBxPucYmOloHjSJYFXIUGt0qNhbDQigfSDYsmtuhnQKvEWpFTPQ4ZGUPzuhTFNJYsMFVjrrucmxp9gZTgVbFropZolmI7wgHUtjbBk2p9k309R2Soh6sfKVmRQpv6emGCp9VgS2ymxGeplbyb+53VT07/yJzxKUsMiOj/UTwUyMZpFgUKuGDVi/GchkdNCOeSYKm6fR3SIFabGJliwqXjLGaySVq3qWX53Uapfz+OBPJzCGZyDB5dQh1toQBMoPMIzvMCr8+S8Oe/Ox7w15yxmjuEPnM8fZHebMg==AAACDnicbVDLSgMxFL1TX7W+6mPnJlgKLkqZKYIui25cVrAPaIchyaRtaDIzJBmhlv6Dn+BWP8CduPUXXPsjptMutPXAhcM598UhieDauO6Xk1tb39jcym8Xdnb39g+Kh0ctHaeKsiaNRaw6BGsmeMSahhvBOoliWBLB2mR0M/PbD0xpHkf3ZpwwX+JBxPucYmOloHjSJYFXIUGt0qNhbDQigfSDYsmtuhnQKvEWpFTPQ4ZGUPzuhTFNJYsMFVjrrucmxp9gZTgVbFropZolmI7wgHUtjbBk2p9k309R2Soh6sfKVmRQpv6emGCp9VgS2ymxGeplbyb+53VT07/yJzxKUsMiOj/UTwUyMZpFgUKuGDVi/GchkdNCOeSYKm6fR3SIFabGJliwqXjLGaySVq3qWX53Uapfz+OBPJzCGZyDB5dQh1toQBMoPMIzvMCr8+S8Oe/Ox7w15yxmjuEPnM8fZHebMg==AAACDnicbVDLSgMxFL1TX7W+6mPnJlgKLkqZKYIui25cVrAPaIchyaRtaDIzJBmhlv6Dn+BWP8CduPUXXPsjptMutPXAhcM598UhieDauO6Xk1tb39jcym8Xdnb39g+Kh0ctHaeKsiaNRaw6BGsmeMSahhvBOoliWBLB2mR0M/PbD0xpHkf3ZpwwX+JBxPucYmOloHjSJYFXIUGt0qNhbDQigfSDYsmtuhnQKvEWpFTPQ4ZGUPzuhTFNJYsMFVjrrucmxp9gZTgVbFropZolmI7wgHUtjbBk2p9k309R2Soh6sfKVmRQpv6emGCp9VgS2ymxGeplbyb+53VT07/yJzxKUsMiOj/UTwUyMZpFgUKuGDVi/GchkdNCOeSYKm6fR3SIFabGJliwqXjLGaySVq3qWX53Uapfz+OBPJzCGZyDB5dQh1toQBMoPMIzvMCr8+S8Oe/Ox7w15yxmjuEPnM8fZHebMg==AAACDnicbVDLSsNAFJ3UV42v+Ni5GSwFF6UkRdBl0Y3LCvYBbQgzk0k7dCYJMxOhhv6Dn+BWP8CduPUXXPsjTtsstPXAhcM598XBKWdKu+6XVVpb39jcKm/bO7t7+wfO4VFHJZkktE0SnsgeRopyFtO2ZprTXiopEpjTLh7fzPzuA5WKJfG9nqTUF2gYs4gRpI0UOCd9HHg1HDRqAxImWkEcCD9wKm7dnQOuEq8gFVCgFTjfgzAhmaCxJhwp1ffcVPs5kpoRTqf2IFM0RWSMhrRvaIwEVX4+/34Kq0YJYZRIU7GGc/X3RI6EUhOBTadAeqSWvZn4n9fPdHTl5yxOM01jsjgUZRzqBM6igCGTlGg++bMQi6ldDRkikpnnIRkhiYg2CdomFW85g1XSadQ9w+8uKs3rIp8yOAVn4Bx44BI0wS1ogTYg4BE8gxfwaj1Zb9a79bFoLVnFzDH4A+vzB/3Imuo=

J

J

A =

A

T

A =

[

]

y =

A

T

y =

[

]

Example: Fit the following data into a line: 𝑦 = 𝐶 + 𝐷 𝑡

1 2 3 4

  • 2

2

4

6

8

10

12

A

T

A

[

C

D

]

= A

T

y

C = − 2, D = 3.

y = − 2 + 3.1 t

Least-Square Data fitting

1 2 3 4

  • 2

2

4

6

8

10

12

y = − 2 + 3.1 t

Py

P = A ( A

T

A )

− 1

A

T

Projection operator:

𝐶 𝐴

Py =

J

J

Example: Fit the following data into a line: 𝑦 = 𝐶 + 𝐷 𝑡

Least-Square Data fitting

A

1

left AAACC3icbVDLSsNAFL3xWesr1aWbwVJwY0mqoMuqG5cV7APaGCbTSTt0JgkzE6WEfIKf4FY/wJ249SNc+yOmaRe29cCFwzn3xfEizpS2rG9jZXVtfWOzsFXc3tnd2zdLBy0VxpLQJgl5KDseVpSzgDY105x2Ikmx8Dhte6Obid9+pFKxMLjX44g6Ag8C5jOCdSa5ZunKTXpSIE59nT4kp3bqmmWrauVAy8SekXK9ADkarvnT64ckFjTQhGOlurYVaSfBUjPCaVrsxYpGmIzwgHYzGmBBlZPkr6eokil95Icyq0CjXP07kWCh1Fh4WafAeqgWvYn4n9eNtX/pJCyIYk0DMj3kxxzpEE1yQH0mKdF8PLfQE2mx0meYSJY9j8gQS0x0Fl8xS8VezGCZtGpV+6xauzsv16+n8UABjuAYTsCGC6jDLTSgCQSe4AVe4c14Nt6ND+Nz2rpizGYOYQ7G1y9EApqu

J

J

Example: Fit the following data into a curve: 𝑦 = 𝑎 + 𝑏 𝑡 + 𝑐 𝑡

&

P

1 2 3 4

4

6

8

10

12

14

A =

A

T

A

[

a

b

c

]

= A

T

y

y = 1.75 − 0.65 t + 0.75 t

2

1 2 3 4

4

6

8

10

12

y = 7 − 9 t + 4.5 t

2

− 0.5 t

3

A

T

A

a

b

c

d

= A

T

y A =

Least-Square Data fitting

1 2 3 4

  • 2

2

4

6

8

10

12

J

J

Example: Fit the following data into a line: 𝑦 = 𝑎 + 𝑏 𝑡

WAx = Wy

W =

2

2

1

0

Weighting function:

( WA )

T

( WA ) = ( WA )

T

Wy

A

T

( W

T

W ) A = A ( W

T

W ) y

A

T

GA = AGy G = W

T

W

x | y ⟩ = x

T

Gy

Metric tensor

x ∥ = ⟨ x | x ⟩ = x

T

Gx

y = −

17

9

8

3

t

Reweighting

errors!

More credible

measurements

Least-Square Data fitting

Example:

§ 2D Rotation matrix

§ 2D Projection onto 𝜃-line

§ 2D Mirror reflection (Householder)

§ Pauli matrices

§ Permutation matrices

g

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

cos

&

𝜃 cos 𝜃 sin 𝜃

cos 𝜃 sin 𝜃 sin

&

cos 2 𝜃 sin 2𝜃

sin 2 𝜃 − cos 2 𝜃

=

&

P

When 𝑈

d

𝑈 = 𝐼, we have:

d

is the left-inverse of 𝑈 when 𝑈 is rectangular (𝑚 > 𝑛 full-column rank)

§ 𝑈𝑥 = 𝑥 preserving norm thus “unitary”

d

Q=

if 𝑈 is invertible (𝑚 = 𝑛 full rank)

d

d

= 𝐼 rows and columns are both orthonormal

§ Decomposition | b ⟩ = x

1

| q

1

⟩ + x

2

| q

2

⟩ + ⋯ + x

n

| q

n

I deserve your

memories

Still remember Fourier?

Parseval’s theorem

= | q

1

⟩⟨ q

1

| b ⟩ + | q

2

⟩⟨ q

2

| b ⟩ + ⋯ + | q

n

⟩⟨ q

n

| b ⟩

||b||

2

= |x 1

|

2

  • |x 2

|

2

  • · · · + |x n

|

2

AAACIHicbVDLTgIxFL2DL8QX6tLNRIIxMSEzaKIbE6Ibl5jIIwEknU6Bhk5n0naMZIY/8Cv8BLf6Ae6MS936I3YGFgLepDnnnvtoe5yAUaks68vILC2vrK5l13Mbm1vbO/ndvbr0Q4FJDfvMF00HScIoJzVFFSPNQBDkOYw0nOF1Um88ECGpz+/UKCAdD/U57VGMlJa6+aM4duL4vnwZP3ZtjScaywm2sesrmaRcp918wSpZaZiLxJ6SQiULaVS7+Z+26+PQI1xhhqRs2VagOhESimJGxrl2KEmA8BD1SUtTjjwiO1H6n7FZ1Ipr9nyhD1dmqv6diJAn5chzdKeH1EDO1xLxv1orVL2LTkR5ECrC8eSiXshM5ZuJOaZLBcGKjWYWOt44V3QpwoLqx5t4gATCSnua067Y8x4sknq5ZJ+WyrdnhcrVxB7IwgEcwjHYcA4VuIEq1ADDE7zAK7wZz8a78WF8TlozxnRmH2bC+P4FWaOjNQ==

When 𝑈

d

𝑈 = 𝐼, we have:

§ Simplified least-square solution

§ Simplified projection operator

P = Q ( Q

T

Q )

− 1

Q

T

= QQ

T

Q

T

Qx = Q

T

b x = Q

T

b

c =

m

m

i = 1

y

i

= y ¯ d =

m

i = 1

( t

i

t ) y

i

m

i = 1

( t

i

t )

2

[

m 0

i

( t

i

t )

2

]

[

c

d

]

[

i

( y

i

y ¯)

i

( t

i

t )( y

i

y ¯) [ ]

m

i

t

i

i

t

i

i

t

2

i

]

[

C

D

]

[

i

y

i

i

t

i

y

i

]

Example: Least-square data fitting