Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fundamental concepts of Tensors, Summaries of Mathematical Physics

An introduction to vector algebra and tensor analysis. It discusses topics such as scalars, vectors, tensors, and their properties. It also covers topics such as coordinate systems, dot and cross products, and vector calculus. written in a technical language and requires prior knowledge of mathematics and physics. It can be useful for students studying physics, engineering, or mathematics. not suitable for beginners in these fields.

Typology: Summaries

2021/2022

Available from 04/23/2022

rumana-farheen
rumana-farheen 🇮🇳

3 documents

1 / 15

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Temb
Arolyis
nneral
General
uey
Snelntiobi.
ongiceum,Hybocbynamis
clecuomugne
hety
Scalasls
amd
vecs
atepecia
Coucs
he
quomly
svtußbdonel
chama
i
Sialass
Tersot
n
3-0
Space
uetahin
?
Called
nvasiemt
The
9amlly
tohdse
emunet
Cha
urdet
elaen
in
3D
p
is
Vecls)V0ient)
rdat
9Lstaten
n D
Spo
Terse
is
a
geembuica
qyamhly"
ashuch
is
Sprced
bey
"
9Mcal
nwmbexs
anstims
into.a
clepnule
o-tidinale
hameimalhen
udr
intoa
cleumile
c
Nank
Teniea
Ce
ep
mted
dinensiem)
Total
ro
Copeni
C3)
3
has
nank
1
Temsoh
na
3-Dpareis
iBa
Cempenerk
ea.
vecl
Scaar
3)°
Hamk
0
Tenso
in
a
3-0
pace
is
a
has
1rnpenendt
Highox
1Qmk
Temst
Frank2
Tesot
n a
3-D
Space
C
)AshadT
CDidinal.
uantjonale
harura
a,3
shut
a
the
Rule
o
onura
teakpeimalien
Og
Oga
d38
0
das
shat
Codumte
tramkjoimal
Cwoiduinmte
-idinole
barsamaluen
A
Cersider
a peind
in
a
3-p
Spaca
the
poum
In
Co-idirie
Syplem
P6
9HepHesemled
as
Pl7,4,3)end
p
P,,)eal
cyhimdbucad-
(P,
8,
phvoia
(7/e,4)
tan
()
lan
pf3
pf4
pf5
pf8
pfa
pfd
pfe
pff

Partial preview of the text

Download Fundamental concepts of Tensors and more Summaries Mathematical Physics in PDF only on Docsity!

Temb Arolyis

nneralGeneral uey Snelntiobi.

ongiceum,Hybocbynamis clecuomugne hety

Scalasls amd vecs atepecia Coucs

he quomly svtußbdonel^ chama

i Sialass

Tersotuetahin n^ 3-0? CalledSpace

nvasiemt The (^) 9amlly tohdse^ emunet^ Cha^

urdet elaen^ in^

3D (^) p

is Vecls)V0ient)

rdat 9Lstaten^ n^

D Spo

Terse is^ a^ geembuica^

qyamhly"ashuch^ is^

Sprced bey^

"

9Mcal nwmbexs

anstims into.a^

clepnule

o-tidinale hameimalhen

udr

intoa cleumile c

Nank

Teniea Ce ep

mted dinensiem)

Totalro Copeni

C3) 3 has

nank 1

Temsoh na

3-DpareisiBa

Cempenerk ea. vecl Scaar 3)°

Hamk 0 Tenso in^ a^ 3-0^ pace^

is a has 1rnpenendt

Highox 1Qmk Temst Frank2 Tesot^

n a 3-D^ Space

C

)AshadT CDidinal. uantjonale a,3 harura

shut a

the Rule

o

onura teakpeimalien Og Oga d 0

das

shatCodumte^ tramkjoimal Cwoiduinmte

-idinole barsamaluen A

Cersider a^ peind^

in a 3-p Spaca
the poum

In Co-idirie Syplem P

9HepHesemled as^

Pl7,4,3)endP,,)ealp

cyhimdbucad- (P,8, phvoia (7/e,4)

tan () lan

dpet n^ n^

dumesiana (^) Space t8^ pSLL3,emied

neul nurnbes

P(,y) Jn^ an^ unboune^ tn.

CemsicaComsiclex therla-^ D^ 8pace)^ Pou^

P(7,y) n

Xelale the prara ,P(x.

D
in adi clock

Nw (^) CoAdunak Jemud^ is^ P(z^ dR^ b1nd^ (o-inde

han a^ 'n'^ duimensiera^ 6pace^8 sepHesemtec

  1. Conyes^ i9m^ e^ ,^ urd

~

I 1s 9telaled bybt Co-rdimle^ tramjimlue^ es,^ i

leCe-idinale beaufmalen

(, ,a ) 1,a....

(, , (^) 4mAoülen.T. ) h

heThe - chdtnate said aolmisiade^ Jacebiam^ at

the point PER

anumiabe

sThe Go idinBe tambumaten is 8aio b e Srgubn

Frwod Josheon

dpeint in^ dusmesiena (^) pace in (^) bums .D (^) Spate

Point

F,,(,,) P(X,,P(

di paniall d (^) ds, - d

PEteme (^) Vu tle rkh (^) rolute (^) )rdn (^) rokalin tn (^8) ST(-,x). ae^ the^ (emporunt Torko d rank^ in

-D

Spae A

A (^) A --

Vramhmalion &n^ eters urclun^

yotallen (^) b

T (^) OCCeße+ Sin

NKT

Cenditien -Sire (

Sine+ ohate (^) aa- Sn

  • Sfne

A

A

A eTh Jocelsian

A a^ A

CE$0 (^) ( +Sine^ (x)

-y

CetX Sin^8 oc Sine+ e

hom P 8

-s?ne ()^

ce()=x u6^ +^

Sine =

tHhe Compdnenk^

oasos ank^

(^1) in a-p Space (- a

-P Space

Eomovaxiem Teid Raunk-

thesue aare N9yuamlitog ohich ie reprczemkd a

AA Inzf^ o-iclimte^ Syslern^ utah^ js^ Mehsed^

t Na

bhar (^) qyandiss 91epesemted as P^ in^ z}^ co-ddeinne aystem i8^ givem^ by P N 2 A

Pr c In qene

A

thoxe as^ N940mlles^

ch is^ Heprzented^

as

whuih s nelakd

s Covaseicm^ Temso^ Kank

hoys^ in^ fx}^

Co-ddirite Syslem^

huih Telabd^ t

p

ApinTf to-tdinats

ehe 9uantihis^

Tepnegemt as

6pkem i ve N N S

P Ln gemu

Q9le quash^ las^

hch 8 Hepresent s 3elaked to

(^3) Muced Tems Rnk^3 hasre Coddiml

saskem shuih^ s N (^) in lo-oidinal

AT

P

ehor pamlleis

rpresenkd as

sten amd^

qivem 6

A (^) acY

embo algcbra

Rejes to ackktwn tês, Subbaihm Tem

Ceabxaclhin e^ tensos^ ,^ oubr^ poeoduer,^ one^ Axoduct^ amd

ule

dddulaen Temts^ he^ oddduen^ e^6 morc^ frue^ 6ame^ sank

Sum e uo A mote lemsot% ts a lenso e Gamegame A0n

ard ype adelilien uo temcis is Cemmutalire cund ARsoaaure

At s Cerkickr tuuo tonieêk q ku 9ank amdand ypehpe

mP

A

AmP

ieTES bye (a,i) amd ank 3

Qubebaclien _Temkns h Suhadan korss ef sameark

diajrence to é mee erkes ame sank am

ype

Cemidler, B^ tenio^ Iamk^3 ad^ pe^ G

- y o

Addon Qukkocuen uy tennd

S 8

P (^) PN

AtB S

3Paoduuct e nhd6 Tank

he product e uo mds 1s cekeoka cheie preeketed

8u thethe preduct gim lw emries

Pandand tho tup fenkois

Yan

hem P

The eblained^ fots i4^ rank^5

orbachen lonsot

Stuy ene^ Comt^ ravaient^ emmcs^

eqya

met he^ Sesulting^

temd is a^ anbcacdeo^

lemo

hse ank^ Ps^ less^

than a^ tham^ the^ cigiral^ tomot

Yank 5 e 6,a)

BTis drank(5-

Jemo

the

les

PY

et g lemsdo t

ther Y=t^ them

5Tooes Procuc kem

he Outan^ produeF^ Jollouto^ by^

Conbacheo is^ Caled

Inne prodiuc tors A PCU (^8) D (6-)

tha (5-)-^3

rank,

CLest^ D.

bx Proclud^ - Vei^ tha^

fooduch lembds

A B

B1,)o,)

AB

aT G (1,D

A (1, 0) (o

otecnko S 4unCten

CuPlimene Co-idiate yte

P (

u

u-C

,

a

st u Cersfde the

pont (^) PCx,,7) in a

ecangu

he ectanguhs

-0hduiae Sysorm.

T + 4k (^) the pesi hen ecla The Same (^) oindP (^) Ti (^) eporegemled 9n (^) ad ne o-ddinata SuskmSuypem lenimue 9depomdemdalueuu,o, 3 ktxte (^) u'- u'(L 4,7)

u3u(T},

apxedb Cusene

u- C, epmeserda Susats The pesilOD Necta in ne^ Co-eRdumal^ sem^ B^ e)

u', u?,u)

Inkuectu amy tuo^ Sars^ qives

rvedlmes.Thase

LVed Lines^ CemLhh,^ asei^

anecLno-drcle Sugtemm ae thogenas

th inkusechen amay^ u^ SusykaCes

ued ines^ (angti^ tude^

dtcgonal them the eltained then CLevilinaa C-chdinadoSystem

u', u', u,u13)

d T^ dulà¥^ dutY^ du

duo, du^0 o,^ du

9hasta d-~ â,dui Thus Can^ alo^ be^ epyestnrted^

a

ae Collee bas Vecles Thay^ e^ the

tamgmt drauon^

b The^ auxsu,u,^ u^

hane calkd Lan

u, u,^ u3^ honce^ calkd

Hamart bosk vecles

U

hgena vedlsg,^ net^ unt^ vecte

d ?. du (^) d dud - A du' dui at d-^ d?.^ d?

dudu

t

In Caselesiam^ oadimte^ &ystcm:

Tha Co-ddimata^ ane^ i^ n^ by^ u-^

, u'-y u-

i

The maui ksd

Pdd+dx*

Cuimdsica o-didinate Syskem.

u-
S

d de^

sds d

Sphuxical o-diduinale Ssb u

Sina

u'

siso

d dr^ de^

S d

Minkouke 3pace

u

u ut ict

obtain the^ Cenugale^ mabuc fess^ in^ isbeical^ and pelav. Co-drcdindles. lindvi cal amd the

g

1/ kT (^) O O -ac_ DKT (^) (enugate mabic^ femsdh dt( 3-0) -0+0 3* 9s-jads O ) Feh^ Sphtiral^ to-^ hdimate^ Sskem.^ (oah Sio'e