









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An introduction to vector algebra and tensor analysis. It discusses topics such as scalars, vectors, tensors, and their properties. It also covers topics such as coordinate systems, dot and cross products, and vector calculus. written in a technical language and requires prior knowledge of mathematics and physics. It can be useful for students studying physics, engineering, or mathematics. not suitable for beginners in these fields.
Typology: Summaries
1 / 15
This page cannot be seen from the preview
Don't miss anything!
ongiceum,Hybocbynamis clecuomugne hety
Scalasls amd vecs atepecia Coucs
i Sialass
Tersotuetahin n^ 3-0? CalledSpace
nvasiemt The (^) 9amlly tohdse^ emunet^ Cha^
urdet elaen^ in^
3D (^) p
is Vecls)V0ient)
rdat 9Lstaten^ n^
D Spo
Terse is^ a^ geembuica^
qyamhly"ashuch^ is^
"
9Mcal nwmbexs
anstims into.a^
clepnule
o-tidinale hameimalhen
udr
Nank
Teniea Ce ep
mted dinensiem)
Totalro Copeni
nank 1
Temsoh na
3-DpareisiBa
Cempenerk ea. vecl Scaar 3)°
Hamk 0 Tenso in^ a^ 3-0^ pace^
is a has 1rnpenendt
Highox 1Qmk Temst Frank2 Tesot^
C
)AshadT CDidinal. uantjonale a,3 harura
shut a
the Rule
o
onura teakpeimalien Og Oga d 0
das
shatCodumte^ tramkjoimal Cwoiduinmte
Cersider a^ peind^
In Co-idirie Syplem P
9HepHesemled as^
Pl7,4,3)endP,,)ealp
cyhimdbucad- (P,8, phvoia (7/e,4)
tan () lan
dumesiana (^) Space t8^ pSLL3,emied
neul nurnbes
P(7,y) n
Xelale the prara ,P(x.
Nw (^) CoAdunak Jemud^ is^ P(z^ dR^ b1nd^ (o-inde
han a^ 'n'^ duimensiera^ 6pace^8 sepHesemtec
~
leCe-idinale beaufmalen
(, , (^) 4mAoülen.T. ) h
the point PER
anumiabe
sThe Go idinBe tambumaten is 8aio b e Srgubn
dpeint in^ dusmesiena (^) pace in (^) bums .D (^) Spate
Point
F,,(,,) P(X,,P(
di paniall d (^) ds, - d
PEteme (^) Vu tle rkh (^) rolute (^) )rdn (^) rokalin tn (^8) ST(-,x). ae^ the^ (emporunt Torko d rank^ in
-D
Spae A
A (^) A --
Vramhmalion &n^ eters urclun^
yotallen (^) b
T (^) OCCeße+ Sin
NKT
Sine+ ohate (^) aa- Sn
A
A
A eTh Jocelsian
A a^ A
CE$0 (^) ( +Sine^ (x)
-y
CetX Sin^8 oc Sine+ e
hom P 8
ce()=x u6^ +^
Sine =
tHhe Compdnenk^
oasos ank^
(^1) in a-p Space (- a
thesue aare N9yuamlitog ohich ie reprczemkd a
t Na
bhar (^) qyandiss 91epesemted as P^ in^ z}^ co-ddeinne aystem i8^ givem^ by P N 2 A
Pr c In qene
A
thoxe as^ N940mlles^
ch is^ Heprzented^
as
s Covaseicm^ Temso^ Kank
hoys^ in^ fx}^
Co-ddirite Syslem^
huih Telabd^ t
p
ehe 9uantihis^
Tepnegemt as
6pkem i ve N N S
P Ln gemu
hch 8 Hepresent s 3elaked to
(^3) Muced Tems Rnk^3 hasre Coddiml
saskem shuih^ s N (^) in lo-oidinal
P
ehor pamlleis
rpresenkd as
sten amd^
qivem 6
A (^) acY
dddulaen Temts^ he^ oddduen^ e^6 morc^ frue^ 6ame^ sank
ard ype adelilien uo temcis is Cemmutalire cund ARsoaaure
mP
AmP
ieTES bye (a,i) amd ank 3
diajrence to é mee erkes ame sank am
Cemidler, B^ tenio^ Iamk^3 ad^ pe^ G
S 8
P (^) PN
he product e uo mds 1s cekeoka cheie preeketed
The eblained^ fots i4^ rank^5
Stuy ene^ Comt^ ravaient^ emmcs^
temd is a^ anbcacdeo^
lemo
than a^ tham^ the^ cigiral^ tomot
BTis drank(5-
Conbacheo is^ Caled
Inne prodiuc tors A PCU (^8) D (6-)
tha (5-)-^3
rank,
A (1, 0) (o
otecnko S 4unCten
CuPlimene Co-idiate yte
P (
u-C
,
a
pont (^) PCx,,7) in a
T + 4k (^) the pesi hen ecla The Same (^) oindP (^) Ti (^) eporegemled 9n (^) ad ne o-ddinata SuskmSuypem lenimue 9depomdemdalueuu,o, 3 ktxte (^) u'- u'(L 4,7)
u3u(T},
apxedb Cusene
u- C, epmeserda Susats The pesilOD Necta in ne^ Co-eRdumal^ sem^ B^ e)
u', u?,u)
anecLno-drcle Sugtemm ae thogenas
ued ines^ (angti^ tude^
dtcgonal them the eltained then CLevilinaa C-chdinadoSystem
d T^ dulà¥^ dutY^ du
duo, du^0 o,^ du
9hasta d-~ â,dui Thus Can^ alo^ be^ epyestnrted^
ae Collee bas Vecles Thay^ e^ the
tamgmt drauon^
b The^ auxsu,u,^ u^
hane calkd Lan
Hamart bosk vecles
U
hgena vedlsg,^ net^ unt^ vecte
d ?. du (^) d dud - A du' dui at d-^ d?.^ d?
dudu
t
In Caselesiam^ oadimte^ &ystcm:
Tha Co-ddimata^ ane^ i^ n^ by^ u-^
, u'-y u-
i
The maui ksd
Pdd+dx*
sds d
Sphuxical o-diduinale Ssb u
Sina
u'
siso
d dr^ de^
S d
u
u ut ict
obtain the^ Cenugale^ mabuc fess^ in^ isbeical^ and pelav. Co-drcdindles. lindvi cal amd the
1/ kT (^) O O -ac_ DKT (^) (enugate mabic^ femsdh dt( 3-0) -0+0 3* 9s-jads O ) Feh^ Sphtiral^ to-^ hdimate^ Sskem.^ (oah Sio'e