Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Determine Autocorrelation - Stochastic Hydrology - Assignment, Exercises of Mathematical Statistics

The main points discuss in the assignment are: Determine Autocorrelation, Confidence Level, Spectral Densities, Maximum Lag, Statistical Properties of Streamflow, Lag One Correlation, Correlation of Flows, First Order Markov Model, Yule Walker Equations

Typology: Exercises

2012/2013

Uploaded on 04/20/2013

sathyanna
sathyanna 🇮🇳

4.4

(8)

103 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Assignment Module 4
1. Determine the autocorrelation at lag 3 for the data given below. Check if this correlation
is significant at 95% confidence level.
14,000 17,700 17,500 15,500 20,500 18,100 15,800 14,900 16,300
14,900 17,600 17,000 17,300 18,300 19,100 17,900 19,400 22,900
16,200 14,300
2. For the data given below, estimate the spectral densities for p=1,2 and 3 with notations
followed in the lectures, for a maximum lag of 2
Year
1
2
3
4
5
6
7
8
9
10
11
Peak flow
(m3/sec)
2160 3210 3070 4000 3830 978 6090 1150 6510 3070 3360
3. Statistical properties (in Mm3) of streamflow at a site in the three seasons of a year are
given below
___ ___________________________________
Season I Season II Season III
______________________________________
Mean 35 15 8
Std. Devaition 40 10 6
Lag one
Correlation 0.43 0.67 0.5
______________________________________
The lag one correlation is the correlation of flows with those of the previous season.
Using a Non-stationary, First Order Markov Model, generate streamflow data for 3 years
at the site. State the assumptions you make in using such a model.
4. Given the auto-correlations, r1 = -0.671 and r2 = 0.463, obtain the initial estimates of
parameters of an ARIMA (2,1,0) model using Yule Walker equations.
Docsity.com
pf3
pf4
pf5

Partial preview of the text

Download Determine Autocorrelation - Stochastic Hydrology - Assignment and more Exercises Mathematical Statistics in PDF only on Docsity!

Assignment – Module 4

  1. Determine the autocorrelation at lag 3 for the data given below. Check if this correlation is significant at 95% confidence level. 14,000 17,700 17,500 15,500 20,500 18,100 15,800 14,900 16, 14,900 17,600 17,000 17,300 18,300 19,100 17,900 19,400 22, 16,200 14,
  2. For the data given below, estimate the spectral densities for p=1,2 and 3 with notations followed in the lectures, for a maximum lag of 2 Year 1 2 3 4 5 6 7 8 9 10 11 Peak flow (m3/sec) 2160 3210 3070 4000 3830 978 6090 1150 6510 3070 3360
  3. Statistical properties (in Mm 3 ) of streamflow at a site in the three seasons of a year are given below

___ ___________________________________ Season I Season II Season III


Mean 35 15 8 Std. Devaition 40 10 6 Lag one Correlation 0.43 0.67 0.


The lag one correlation is the correlation of flows with those of the previous season. Using a Non-stationary, First Order Markov Model, generate streamflow data for 3 years at the site. State the assumptions you make in using such a model.

  1. Given the auto-correlations, r 1 = -0.671 and r 2 = 0.463, obtain the initial estimates of parameters of an ARIMA (2,1,0) model using Yule Walker equations.
  1. Express the following two models in the form ARIMA (p,d,q): a) (1-0.2B) (1-B) Xt = ( 1 – 0.5B) et b) (1-B) Xt = (1 – 0.2B) et
  2. Monthly streamflow data for 33 years is analysed. The correlogram (autocorrelation function), partial autocorrelations and the line spectrum, with usual notations, are shown in the figure above. (a) Identify (determine) the periodicities in the data, (b) Which model of the ARMA family is best suited for this data? Why?

Lag --->

-0.5 0 10 20 30 40 50 60 70 80 90 100

0

1 Partial Autocorrelogram

Partial Auto-correlation ---> Lag --->

(^00 1 2 3 4 5 6 )

2

4

6 x 10^8 Line Spectrum

w(k) --->

I --->

-0.5 20

0

1

Auto-correlation ---> 0 20 40 60 80 100

Correlogram

9. The table below gives a time series composed of 60 values. Plot this series to identify its

trend. Compute the first differences and plot the resulting series. (a)Plot the autocorrelations upto 15 lags for both the original and the differenced series. Also determine the first 3 partial auto correlations for the original data. (b) Plot the power spectrum of the original and the differenced data

  1. The inflow data (in million cubic feet) to a reservoir is given below
  • 1 9.56 21 60.50 41 85. Period Observation Period Observation Period Observation
  • 2 12.48 22 63.29 42 84.
  • 3 13.64 23 66.55 43 86.
  • 4 18.80 24 68.65 44 88.
  • 5 25.04 25 72.66 45 90.
  • 6 30.33 26 71.25 46 93.
  • 7 34.08 27 65.48 47 94.
  • 8 40.10 28 62.68 48 96.
  • 9 42.40 29 56.60 49 96.
  • 10 41.36 30 49.90 50 96.
  • 11 39.25 31 49.82 51 99.
  • 12 38.20 32 51.87 52 104.
  • 13 41.47 33 57.74 53 105.
  • 14 46.14 34 58.24 54 105.
  • 15 52.62 35 58.31 55 109.
  • 16 59.01 36 59.91 56 110.
  • 17 60.20 37 62.61 57 115.
  • 18 58.53 38 69.07 58 122.
  • 19 56.98 39 77.36 59 126.
  • 20 57.82 40 80.39 60 132.
    • 41 29,243 87,671 77,982 14,465 12,527 23,769 5,976 590 2,391 1,245 1,339 3, 1940- Year Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
  • 41-42 29,019 76,623 56,931 18,032 13,877 2,633 3,616 580 731 258 792 1,
  • 42-43 14,916 97,800 56,286 24,710 13,262 3,714 3,957 2,253 897 588 785 6,
  • 43-44 17,800 107,200 24,321 29,113 38,651 12,887 3,717 1,781 1,264 1,148 610 1,
  • 44-45 1945- 4,665 78,799 34,444 9,453 12,560 8,985 4,078 1,816
    • 46 5,860 71,985 31,280 17,474 12,322 4,454 2,153 1,446 1,162 925 1,006
  • 46-47 20,720 77,108 113,153 27,862 14,683 16,006 6,914 1,259 1,068 766 1,321 1,
  • 47-48 1,745 55,929 58,237 39,271 21,552 2,236 3,063 1,548 952 275 1,759 3,
  • 48-49 16,421 55,903 96,601 23,747 15,347 7,138 4,026 1,622 841 727 731 1,
  • 49-50 1950- 13,942 44,977 51,101 24,715 15,400 4,822 2,727 1,831 1,346
    • 51 7,855 91,462 44,170 49,455 14,721 6,409 2,176 1,608 920 432 1,157 2,
  • 51-52 15,052 55,179 44,183 16,420 20,326 5,104 2,321 722 952 609 623 1,
  • 52-53 9,430 36,096 55,821 10,194 24,359 2,914 4,109 1,701
  • 53-54 9,658 104,243 100,664 15,400 35,493 3,509 1,446 677 198 168 603 4,
  • 54-55 1955- 20,101 80,172 74,683 22,160 22,692 2,133 3,549 1,718 610 248 879 8,
    • 56 23,448 26,032 25,025 27,574 29,877 8,225 4,114 2,030 1,163 584 848 2,
  • 56-57 28,459 87,026 57,194 14,943 27,650 20,217 2,463 341 529 535 469 5,
  • 57-58 16,196 83,511 41,085 9,148 11,072 14,093 3,159 1,469 1,059 634 1,493 5,
  • 58-59 14,394 131,338 51,913 31,080 18,479 7,267 3,441 1,334 896 304 688 1,
  • 59-60 26,616 196,988 54,466 52,557 13,280 6,893 3,481 1,337 582 818 1,988 3,