






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A part of the university of alabama in huntsville (uah) cpe/ee 422/522 advanced logic design course material. It covers the motivation for using hardware description languages (hdl) in digital design, the benefits of hdl-based design, and an overview of the design flow. The document also introduces the uah library of soft cores and outlines the project-based approach of the course.
Typology: Study Guides, Projects, Research
1 / 12
This page cannot be seen from the preview
Don't miss anything!
Design productivity 21% / year
Chip Complexity 58% / year
ReferenceReference ManualManual
InstructionInstruction Set AnalysisSet Analysis
DpthDpth &&CntrCntr DesignDesign
VHDL ModelVHDL Model
VerificationVerification
ASM TestASM Test ProgramsPrograms
iHex2RomiHex2Rom
Synthesis&Synthesis& ImplementationImplementation
ProgramsPrograms
C CompilerC Compiler
Specification
Design
Modeling
Simulation & Verification
Implementation
Measurements (Compl.&Perf.&Power)
Design Improvements
( X⊕ Y)⊕Z=X⊕(Y⊕Z )(Associative law)
X( Y⊕ Z)=XY⊕ XZ (Distributive law)
( X⊕Y)'=X⊕Y'=X'⊕Y=XY+X'Y '
w 3
w 3
f
w 1
0
w 2
(a) Modified truth table (b) Circuit
w 1 f
0
w (^) 2
w 1 w 2 w 3 f 0 0 0 0 1 1 1 1
w (^) 3
n
w (^) n – 1
n inputs
Enable En
2 n outputs
y (^) 0
y 2 n (^) – 1
w
w 1 y 0
0
w 0
(c) Logic circuit
w 1
w 0
x x
En
y 1
y (^) 2
y (^) 3
y (^) 0
y (^) 1
y 2
y (^) 3
En
w 0
En
y 0 w 1 y 1 y 2 y 3
(a) Truth table
(b) Graphic symbol
w 2
w 0 y 0 y 1 y 2 y 3
w 0
En
y 0 w 1 y 1 y 2 y 3
w 0
En
y 0 w 1 y 1 y 2 y 3
y 4 y 5 y 6 y 7
w 1
En
w 0
En
y 0 w 1 y 1 y 2 y 3
y 8 y 9 y 10 y 11
w 2
w 0 y 0 y 1 y 2 y 3
w 0
En
y 0 w 1 y 1 y 2 y 3
w 0
En
y 0 w 1 y 1 y 2 y 3
y 4 y 5 y 6 y 7
w 1
w 0
En
y 0 w 1 y 1 y 2 y 3
y 12 y 13 y 14 y 15
w 0
En
y 0 w 1 y 1 y 2 y 3
w 3
En
2 n inputs
w (^) 0
w (^) 2 n (^) – 1
y 0
y (^) n – 1
n outputs
w 3 y 1
0
y (^) 0
(b) Circuit
w 1
w 0
w (^) 2
w (^) 1
w 0
y 0 w 2
w 3^ y 1 (a) Truth table
(a) Truth table for a 4-to-2 priority encoder